skip to main content


Title: A Revaluation of Computational Thinking in K–12 Education: Moving Toward Computational Literacies
Over the past decade, initiatives around the world have introduced computing into K–12 education under the umbrella of computational thinking. While initial implementations focused on skills and knowledge for college and career readiness, more recent framings include situated computational thinking (identity, participation, creative expression) and critical computational thinking (political and ethical impacts of computing, justice). This expansion reflects a revaluation of what it means for learners to be computationally-literate in the 21st century. We review the current landscape of K–12 computing education, discuss interactions between different framings of computational thinking, and consider how an encompassing framework of computational literacies clarifies the importance of computing for broader K–12 educational priorities as well as key unresolved issues.  more » « less
Award ID(s):
1742140
NSF-PAR ID:
10309422
Author(s) / Creator(s):
 ;  
Date Published:
Journal Name:
Educational Researcher
ISSN:
0013-189X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gresalfi, M. and (Ed.)
    The importance of integrating computational thinking (CT) into existing school structures, like core content domains, has emerged from efforts to improve computer science education in the U.S. In the past, computer science has often been treated as an elective or enrichment activity, which limits students’ exposure to foundational computing ideas, especially in underserved schools. However, given the ubiquity technology plays in our lives, it is imperative that all students have access to CT. Few studies have focused on how pre-service teachers (PSTs) learn about CT. Some researchers argue that CT integration into K-12 education belongs in teacher preparation programs and that teacher educators should develop courses aimed at supporting PSTs’ understanding of CT in the context of schools. This paper explores the ways in which PSTs begin to understand CT and how they work to integrate CT into their core subject areas. 
    more » « less
  2. Abstract

    Contemporary science is a field that is becoming increasingly computational. Today’s scientists not only leverage computational tools to conduct their investigations, they often must contribute to the design of the computational tools for their specific research. From a science education perspective, for students to learn authentic science practices, students must learn to use the tools of the trade. This necessity in science education has shaped recent K–12 science standards including the Next Generation Science Standards, which explicitly mention the use of computational tools and simulations. These standards, in particular, have gone further and mandated thatcomputational thinkingbe taught and leveraged as a practice of science. While computational thinking is not a new term, its inclusion in K–12 science standards has led to confusion about what the term means in the context of science learning and to questions about how to differentiate computational thinking from other commonly taught cognitive skills in science like problem-solving, mathematical reasoning, and critical thinking. In this paper, we propose a definition ofcomputational thinking for science(CT-S) and a framework for its operationalization in K–12 science education. We situate our definition and framework in Activity Theory, from the learning sciences, in order to position computational thinking as an input to and outcome of science learning that is mediated by computational tools.

     
    more » « less
  3. Historically, K–12 science education and curriculum development has been organized and enacted in silos by subject areas (biology, chemistry, physics, Earth and space science) with very little focus on the connectivity and relationships between them. In recent decades, however, major educational stakeholders such as the National Science Teaching Association (NSTA) have called for an integrated and interdisciplinary K–12 science education (NSTA 2020). In addition, the Next Generation Science Standards (NGSS; NGSS Lead States 2013) include crosscutting concepts that link subjects, ideas, and practices. These calls for an interdisciplinary science, technology, engineering, and mathematics (STEM) education include broadening the canvas and focus to encompass computing and the computational sciences. Computing and computational thinking have received considerable attention because they are instrumental in solving the problems of the 21st century (Wing 2006), both known and unknown. Computing-based algorithms will be the drivers of healthcare, national security, and financial markets (Luckin 2018). As the student Gabriella noted in the opening quote, coding (and computational thinking) has potential uses in subjects not yet imagined—subjects both in the traditional school sense of the word, as well as personal and civic uses. 
    more » « less
  4. Gibson, D. C. ; Ochoa, M. N. ; Christensen, R. ; Cohen, J. ; Crawford, D. ; Graziano, K. ; Langran, E. ; Langub, L. ; Rutledge, D. ; Voogt, J. (Ed.)
    As computer science education standards are disseminated to K-12 school districts nationally, teacher education programs are left with the challenge of ensuring pre-service teachers are prepared to enter their first classroom with the skills and knowledge necessary to align instruction with the new standards. This paper examines the use of a learning intervention called “Block-Based Coding and Computational Thinking for Conceptual Mathematics” (B2C3Math) that aimed to help pre-service teachers majoring in early childhood and elementary education learn and apply computational thinking concepts to their elementary mathematics teaching. Ten pre-service teachers all at the same stage in their teacher preparation program participated in this convergent mixed-methods study. A focus of the research was placed on how participant’s computational thinking knowledge changed following the implementation of B2C3Math. Findings suggest that there were changes in the participants’ views of computational thinking application to elementary mathematics teaching following the implementation of B2C3Math. Implications for research and instructional practices using B2C3Math for teacher education are discussed. 
    more » « less
  5. As schools and districts across the United States adopt computer science standards and curriculum for K-12 computer science education, they look to integrate the foundational concepts of computational thinking (CT) into existing core subjects of elementary-age students. Research has shown the effectiveness of teaching CT elements (abstraction, generalization, decomposition, algorithmic thinking, debugging) using non-programming, unplugged approaches. These approaches address common barriers teachers face with lack of knowledge, familiarity, or technology tools. Picture books and graphic novels present an unexplored non-programming, unplugged resource for teachers to integrate computational thinking into their CT or CT-integrated lessons. This analysis examines 27 picture books and graphic novels published between 2015 and 2020 targeted to K-6 students for representation of computational thinking elements. Using the computational thinking curriculum framework for K-6, we identify the grade-level competencies of the CT elements featured in the books compared to the books’ target age groups. We compare grade-level competencies to interest level to identify each CT element representation as “foundational,” “on-target,” or “advanced.” We conclude that literature offers teachers a non-programming unplugged resource to expose students to CT and enhance CT and CT-integrated lessons, while also personalizing learning based on CT readiness and interest level. 
    more » « less