skip to main content


Title: Asante, C.K., A. Semerjian, P. Xu, D. Jackson, Y. Cheng, A. Chasen, A. Shah, J. Brett, and M. Broadstone
Historically, K–12 science education and curriculum development has been organized and enacted in silos by subject areas (biology, chemistry, physics, Earth and space science) with very little focus on the connectivity and relationships between them. In recent decades, however, major educational stakeholders such as the National Science Teaching Association (NSTA) have called for an integrated and interdisciplinary K–12 science education (NSTA 2020). In addition, the Next Generation Science Standards (NGSS; NGSS Lead States 2013) include crosscutting concepts that link subjects, ideas, and practices. These calls for an interdisciplinary science, technology, engineering, and mathematics (STEM) education include broadening the canvas and focus to encompass computing and the computational sciences. Computing and computational thinking have received considerable attention because they are instrumental in solving the problems of the 21st century (Wing 2006), both known and unknown. Computing-based algorithms will be the drivers of healthcare, national security, and financial markets (Luckin 2018). As the student Gabriella noted in the opening quote, coding (and computational thinking) has potential uses in subjects not yet imagined—subjects both in the traditional school sense of the word, as well as personal and civic uses.  more » « less
Award ID(s):
1759152
NSF-PAR ID:
10336557
Author(s) / Creator(s):
Date Published:
Journal Name:
Connected science learning
Volume:
3
Issue:
2
ISSN:
2475-8779
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education. Despite the increased presence of engineering and integrated STEM education in K-12 education, there are several concerns to consider. One concern is the limited availability of observation instruments appropriate for instruction where multiple STEM disciplines are present and integrated with one another. Addressing this concern requires the development of a new observation instrument, designed with integrated STEM instruction in mind. An instrument such as this has implications for both research and practice. For example, research using this instrument could help educators compare integrated STEM instruction across grade bands. Additionally, this tool could be useful in the preparation of pre-service teachers and professional development of in-service teachers new to integrated STEM education and formative learning through professional learning communities or classroom coaching. The work presented here describes in detail the development of an integrated STEM observation instrument - the STEM Observation Protocol (STEM-OP) - that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the STEM-OP began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education. As part of the instrument development process, the project team had access to over 2000 classroom videos where integrated STEM education took place. Initial analysis of a selection of these videos helped the project team write a preliminary draft instrument consisting of 79 items. Through several rounds of revisions, including the construction of detailed scoring levels of the items and collapsing of items that significantly overlapped, and piloting of the instrument for usability, items were added, edited, and/or removed for various reasons. These reasons included issues concerning the intricacy of the observed phenomenon or the item not being specific to integrated STEM education (e.g., questioning). In its final form, the STEM-OP consists of 10 items, each comprising four descriptive levels. Each item is also accompanied by a set of user guidelines, which have been refined by the project team as a result of piloting the instrument and reviewed by external experts in the field. The instrument has shown to be reliable with the project team and further validation is underway. The STEM-OP will be of use to a wide variety of educators and educational researchers looking to understand the implementation of integrated STEM education in K-12 science and engineering classrooms. 
    more » « less
  2. null (Ed.)
    Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education. Despite the increased presence of engineering and integrated STEM education in K-12 education, there are several concerns to consider. One concern is the limited availability of observation instruments appropriate for instruction where multiple STEM disciplines are present and integrated with one another. Addressing this concern requires the development of a new observation instrument, designed with integrated STEM instruction in mind. An instrument such as this has implications for both research and practice. For example, research using this instrument could help educators compare integrated STEM instruction across grade bands. Additionally, this tool could be useful in the preparation of pre-service teachers and professional development of in-service teachers new to integrated STEM education and formative learning through professional learning communities or classroom coaching. The work presented here describes in detail the development of an integrated STEM observation instrument that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the instrument began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education. As part of the instrument development process, the project team had access to over 2000 classroom videos where integrated STEM education took place. Initial analysis of a selection of these videos helped the project team write a preliminary draft instrument consisting of 52 items. Through several rounds of revisions, including the construction of detailed scoring levels of the items and collapsing of items that significantly overlapped, and piloting of the instrument for usability, items were added, edited, and/or removed for various reasons. These reasons included issues concerning the intricacy of the observed phenomenon or the item not being specific to integrated STEM education (e.g., questioning). In its final form, the instrument consists of 10 items, each comprising four descriptive levels. Each item is also accompanied by a set of user guidelines, which have been refined by the project team as a result of piloting the instrument and reviewed by external experts in the field. The instrument has shown to be reliable with the project team and further validation is underway. This instrument will be of use to a wide variety of educators and educational researchers looking to understand the implementation of integrated STEM education in K-12 science and engineering classrooms. 
    more » « less
  3. null (Ed.)
    Engaging students in science learning that integrates disciplinary knowledge and practices such as computational thinking (CT) is a challenge that may represent unfamiliar territory for many teachers. CompHydro Baltimore is a collaborative partnership aimed at enacting Next Generation Science Standards (NGSS)–aligned instruction to support students in developing knowledge and practice reflective of the goals laid out in A Framework for K–12 Science Education (National Research Council 2012) “... that by the end of 12th grade, all students possess sufficient knowledge of science and engineering to engage in public discussion on related issues … and are careful consumers of scientific and technological information related to their everyday lives.” This article presents the results of a partnership that generated a new high school level curriculum and teacher professional development program that tackled the challenge of integrating hydrologic learning with computational thinking as applied to a real-world issue of flooding. CompHydro Baltimore produced Baltimore Floods, a six-lesson high school unit that builds students’ water literacy by engaging them in computational thinking (CT) and modeling practices as they learn about water system processes involved in urban flooding (See Computational Thinking and Associated Science Practices). CompHydro demonstrates that broad partnerships can address these challenges, bringing together the diverse expertise necessary to develop innovative CT-infused science curriculum materials and the teacher supports needed for successful implementation. 
    more » « less
  4. Abstract

    In most middle schools, learning is segregated by discipline. Yet interdisciplinary approaches have been shown to cultivate creative thinking, support problem solving, and develop interest while supporting knowledge gains (NAE & NRC in STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research. National Academies Press, Washington, 2014). The Designing Biomimetic Robots project emphasizes problem-based learning to integrate engineering, science, and computational thinking (CT). During a 3 to 4-week unit, students study the natural world to learn how animals accomplish different tasks, then design a robot inspired by what they learned. The project engages students in science, engineering, and CT practices. Over the course of a 3-year project, we used a design-based research approach to: (1) identify and describe strategies and challenges that emerge from integrated curriculum design, (2) explicate how a balance of integrated disciplines can provide opportunities for student participation in science, engineering, and CT practices, and (3) explore how a technology design task can support students’ participation in integrated learning. Data from three focal groups (one from each year of the project) suggest that a focused design task, supported by explicit and targeted supports for science, CT, and engineering practices, led to a student technology design process that was driven by disciplinary understanding. This work highlights the importance of drawing out and prioritizing alignments between disciplines (Barber in Educ Des, 2(8), 2015), to enable integrated learning. Additionally, this work demonstrates how a technology design task can support student learning across disciplines, and how engaging in CT practices can further help students draw these connections.

     
    more » « less
  5. Abstract

    The purpose of this study is to present a conceptual framework that integrates science and language learning for all students, including English learners (ELs). This framework is grounded in the mutually supportive nature of science instructional shifts, spurred byA Framework for K‐12 Science Education(National Research Council, 2012. A framework for K‐12 science education: Practices, crosscutting concepts, and core ideas) and the Next Generation Science Standards (NGSS), and language instructional shifts, informed by contemporary thinking in second language acquisition. First, we describe the conceptual framework that consists of our perspective and design principles. Then, we describe one approach for using the conceptual framework to develop NGSS‐aligned instructional materials that promote science and language learning with elementary students, including ELs. Finally, we offer implications for future research for our own design research specifically and for the field more broadly. The conceptual framework highlights how substantive collaboration between content areas, such as science, and the field of EL education can help ensure that all students, and ELs in particular, are supported in meeting rigorous content standards while developing proficiency in English.

     
    more » « less