skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation Paradigms in Question Answering
Question answering (QA) primarily descends from two branches of research: (1) Alan Turing’s investigation of machine intelligence at Manchester University and (2) Cyril Cleverdon’s comparison of library card catalog indices at Cranfield University. This position paper names and distinguishes these paradigms. Despite substantial overlap, subtle but significant distinctions exert an outsize influence on research. While one evaluation paradigm values creating more intelligent QA systems, the other paradigm values building QA systems that appeal to users. By better understanding the epistemic heritage of QA, researchers, academia, and industry can more effectively accelerate QA research.  more » « less
Award ID(s):
1822494
PAR ID:
10309823
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The inherent difficulty of knowledge specification and the lack of trained specialists are some of the key obstacles on the way to making intelligent systems based on the knowledge representation and reasoning (KRR) paradigm commonplace. Knowledge and query authoring using natural language, especially controlled natural language (CNL), is one of the promising approaches that could enable domain experts, who are not trained logicians, to both create formal knowledge and query it. In previous work, we introduced the KALM system (Knowledge Authoring Logic Machine) that supports knowledge authoring (and simple querying) with very high accuracy that at present is unachievable via machine learning approaches. The present paper expands on the question answering aspect of KALM and introduces KALM-QA (KALM for Question Answering) that is capable of answering much more complex English questions. We show that KALM-QA achieves 100% accuracy on an extensive suite of movie-related questions, called MetaQA, which contains almost 29,000 test questions and over 260,000 training questions. We contrast this with a published machine learning approach, which falls far short of this high mark. 
    more » « less
  2. The inherent difficulty of knowledge specification and the lack of trained specialists are some of the key obstacles on the way to making intelligent systems based on the knowledge representation and reasoning (KRR) paradigm commonplace. Knowledge and query authoring using natural language, especially controlled natural language (CNL), is one of the promising approaches that could enable domain experts, who are not trained logicians, to both create formal knowledge and query it. In previous work, we introduced the KALM system (Knowledge Authoring Logic Machine) that supports knowledge authoring (and sim- ple querying) with very high accuracy that at present is unachievable via machine learning approaches. The present paper expands on the question answering aspect of KALM and introduces KALM-QA (KALM for Question Answering) that is capable of answering much more complex English questions. We show that KALM-QA achieves 100% accuracy on an extensive suite of movie-related questions, called MetaQA, which contains almost 29,000 test questions and over 260,000 training questions. We contrast this with a published machine learning approach, which falls far short of this high mark. 
    more » « less
  3. null (Ed.)
    In addition to the traditional task of machines answering questions, question answering (QA) research creates interesting, challenging questions that help systems how to answer questions and reveal the best systems. We argue that creating a QA dataset—and the ubiquitous leaderboard that goes with it—closely resembles running a trivia tournament: you write questions, have agents (either humans or machines) answer the questions, and declare a winner. However, the research community has ignored the hard-learned lessons from decades of the trivia community creating vibrant, fair, and effective question answering competitions. After detailing problems with existing QA datasets, we outline the key lessons—removing ambiguity, discriminating skill, and adjudicating disputes—that can transfer to QA research and how they might be implemented. 
    more » « less
  4. The `pre-train, prompt, predict' paradigm of large language models (LLMs) has achieved remarkable success in open-domain question answering (OD-QA). However, few works explore this paradigm in multi-document question answering (MD-QA), a task demanding a thorough understanding of the logical associations among the contents and structures of documents. To fill this crucial gap, we propose a Knowledge Graph Prompting (KGP) method to formulate the right context in prompting LLMs for MD-QA, which consists of a graph construction module and a graph traversal module. For graph construction, we create a knowledge graph (KG) over multiple documents with nodes symbolizing passages or document structures (e.g., pages/tables), and edges denoting the semantic/lexical similarity between passages or document structural relations. For graph traversal, we design an LLM-based graph traversal agent that navigates across nodes and gathers supporting passages assisting LLMs in MD-QA. The constructed graph serves as the global ruler that regulates the transitional space among passages and reduces retrieval latency. Concurrently, the graph traversal agent acts as a local navigator that gathers pertinent context to progressively approach the question and guarantee retrieval quality. Extensive experiments underscore the efficacy of KGP for MD-QA, signifying the potential of leveraging graphs in enhancing the prompt design and retrieval augmented generation for LLMs. Our code: https://github.com/YuWVandy/KG-LLM-MDQA. 
    more » « less
  5. Today there is no effective support for device-wide question answer- ing on mobile devices. State-of-the-art QA models are deep learning behemoths designed for the cloud which run extremely slow and require more memory than available on phones. We present DeQA, a suite of latency- and memory- optimizations that adapts existing QA systems to run completely locally on mobile phones. Specifi- cally, we design two latency optimizations that (1) stops processing documents if further processing cannot improve answer quality, and (2) identifies computation that does not depend on the ques- tion and moves it offline. These optimizations do not depend on the QA model internals and can be applied to several existing QA models. DeQA also implements a set of memory optimizations by (i) loading partial indexes in memory, (ii) working with smaller units of data, and (iii) replacing in-memory lookups with a key-value database. We use DeQA to port three state-of-the-art QA systems to the mobile device and evaluate over three datasets. The first is a large scale SQuAD dataset defined over Wikipedia collection. We also create two on-device QA datasets, one over a publicly available email data collection and the other using a cross-app data collection we obtain from two users. Our evaluations show that DeQA can run QA models with only a few hundred MBs of memory and provides at least 13x speedup on average on the mobile phone across all three datasets. 
    more » « less