This paper proposes a novel oversampling approach that strives to balance the class priors with a considerably imbalanced data distribution of high dimensionality. The crux of our approach lies in learning interpretable latent representations that can model the synthetic mechanism of the minority samples by using a generative adversarial network (GAN). A Bayesian regularizer is imposed to guide the GAN to extract a set of salient features that are either disentangled or intentionally entangled, with their interplay controlled by a prescribed structure, defined with human-in-the-loop. As such, our GAN enjoys an improved sample complexity, being able to synthesize high-quality minority samples even if the sizes of minority classes are extremely small during training. Empirical studies substantiate that our approach can empower simple classifiers to achieve superior imbalanced classification performance over the state-of-the-art competitors and is robust across various imbalance settings. Code is released in github.com/fudonglin/IMSIC.
more »
« less
Interpretable Minority Synthesis for Imbalanced Classification
This paper proposes a novel oversampling approach that strives to balance the class priors with a considerably imbalanced data distribution of high dimensionality. The crux of our approach lies in learning interpretable latent representations that can model the synthetic mechanism of the minority samples by using a generative adversarial network(GAN). A Bayesian regularizer is imposed to guide the GAN to extract a set of salient features that are either disentangled or intensionally entangled, with their interplay controlled by a prescribed structure, defined with human-in-the-loop. As such, our GAN enjoys an improved sample complexity, being able to synthesize high-quality minority samples even if the sizes of minority classes are extremely small during training. Empirical studies substantiate that our approach can empower simple classifiers to achieve superior imbalanced classification performance over the state-of-the-art competitors and is robust across various imbalance settings. Code is released in github.com/fudonglin/IMSIC.
more »
« less
- PAR ID:
- 10310053
- Date Published:
- Journal Name:
- Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In many real-world classification applications such as fake news detection, the training data can be extremely imbalanced, which brings challenges to existing classifiers as the majority classes dominate the loss functions of classifiers. Oversampling techniques such as SMOTE are effective approaches to tackle the class imbalance problem by producing more synthetic minority samples. Despite their success, the majority of existing oversampling methods only consider local data distributions when generating minority samples, which can result in noisy minority samples that do not fit global data distributions or interleave with majority classes. Hence, in this paper, we study the class imbalance problem by simultaneously exploring local and global data information since: (i) the local data distribution could give detailed information for generating minority samples; and (ii) the global data distribution could provide guidance to avoid generating outliers or samples that interleave with majority classes. Specifically, we propose a novel framework GL-GAN, which leverages the SMOTE method to explore local distribution in a learned latent space and employs GAN to capture the global information, so that synthetic minority samples can be generated under even extremely imbalanced scenarios. Experimental results on diverse real data sets demonstrate the effectiveness of our GL-GAN framework in producing realistic and discriminative minority samples for improving the classification performance of various classifiers on imbalanced training data. Our code is available at https://github.com/wentao-repo/GL-GAN.more » « less
-
null (Ed.)In this paper, we propose a discriminative variational autoencoder (DVAE) to assist deep learning from data with imbalanced class distributions. DVAE is designed to alleviate the class imbalance by explicitly learning class boundaries between training samples, and uses learned class boundaries to guide the feature learning and sample generation. To learn class boundaries, DVAE learns a latent two-component mixture distributor, conditioned by the class labels, so the latent features can help differentiate minority class vs. majority class samples. In order to balance the training data for deep learning to emphasize on the minority class, we combine DVAE and generative adversarial networks (GAN) to form a unified model, DVAAN, which generates synthetic instances close to the class boundaries as training data to learn latent features and update the model. Experiments and comparisons confirm that DVAAN significantly alleviates the class imbalance and delivers accurate models for deep learning from imbalanced data.more » « less
-
In the field of healthcare, electronic health records (EHR) serve as crucial training data for developing machine learning models for diagnosis, treatment, and the management of healthcare resources. However, medical datasets are often imbalanced in terms of sensitive attributes such as race/ethnicity, gender, and age. Machine learning models trained on class-imbalanced EHR datasets perform significantly worse in deployment for individuals of the minority classes compared to those from majority classes, which may lead to inequitable healthcare outcomes for minority groups. To address this challenge, we propose Minority Class Rebalancing through Augmentation by Generative modeling (MCRAGE), a novel approach to augment imbalanced datasets using samples generated by a deep generative model. The MCRAGE process involves training a Conditional Denoising Diffusion Probabilistic Model (CDDPM) capable of generating high-quality synthetic EHR samples from underrepresented classes. We use this synthetic data to augment the existing imbalanced dataset, resulting in a more balanced distribution across all classes, which can be used to train less biased downstream models. We measure the performance of MCRAGE versus alternative approaches using Accuracy, F1 score and AUROC of these downstream models. We provide theoretical justification for our method in terms of recent convergence results for DDPMs.more » « less
-
Abstract Spectroscopic techniques generate one-dimensional spectra with distinct peaks and specific widths in the frequency domain. These features act as unique identities for material characteristics. Deep neural networks (DNNs) has recently been considered a powerful tool for automatically categorizing experimental spectra data by supervised classification to evaluate material characteristics. However, most existing work assumes balanced spectral data among various classes in the training data, contrary to actual experiments, where the spectral data is usually imbalanced. The imbalanced training data deteriorates the supervised classification performance, hindering understanding of the phase behavior, specifically, sol-gel transition (gelation) of soft materials and glycomaterials. To address this issue, this paper applies a novel data augmentation method based on a generative adversarial network (GAN) proposed by the authors in their prior work. To demonstrate the effectiveness of the proposed method, the actual imbalanced spectral data from Pluronic F-127 hydrogel and Alpha-Cyclodextrin hydrogel are used to classify the phases of data. Specifically, our approach improves 8.8%, 6.4%, and 6.2% of the performance of the existing data augmentation methods regarding the classifier’s F-score, Precision, and Recall on average, respectively. Specifically, our method consists of three DNNs: the generator, discriminator, and classifier. The method generates samples that are not only authentic but emphasize the differentiation between material characteristics to provide balanced training data, improving the classification results. Based on these validated results, we expect the method’s broader applications in addressing imbalanced measurement data across diverse domains in materials science and chemical engineering.more » « less
An official website of the United States government

