skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Agent-Based Computational Epidemiological Modeling
The study of epidemics is useful for not only understanding outbreaks and trying to limit their adverse effects, but also because epidemics are related to social phenomena such as government instability, crime, poverty, and inequality. One approach for studying epidemics is to simulate their spread through populations. In this work, we describe an integrated multi-dimensional approach to epidemic simulation, which encompasses: (i) a theoretical framework for simulation and analysis; (ii) synthetic population (digital twin) generation; (iii) (social contact) network construction methods from synthetic populations, (iv) stylized network construction methods; and (v) simulation of the evolution of a virus or disease through a social network. We describe these aspects and end with a short discussion on simulation results that inform public policy.  more » « less
Award ID(s):
1916670
PAR ID:
10310251
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of the Indian Institute of Science
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Preventing and slowing the spread of epidemics is achieved through techniques such as vaccination and social distancing. Given practical limitations on the number of vaccines and cost of administration, optimization becomes a necessity. Previous approaches using mathematical programming methods have shown to be effective but are limited by computational costs. In this work, we present PREEMPT, a new approach for intervention via maximizing the influence of vaccinated nodes on the network.We prove submodular properties associated with the objective function of our method so that it aids in construction of an efficient greedy approximation strategy. Consequently, we present a new parallel algorithm based on greedy hill climbing for PREEMPT, and present an efficient parallel implementation for distributed CPU-GPU heterogeneous platforms. Our results demonstrate that PREEMPT is able to achieve a significant reduction (up to 6:75) in the percentage of people infected and up to 98% reduction in the peak of the infection on a cityscale network. We also show strong scaling results of PREEMPT on up to 128 nodes of the Summit supercomputer. Our parallel implementation is able to significantly reduce time to solution, from hours to minutes on large networks. This work represents a first-of-its-kind effort in parallelizing greedy hill climbing and applying it toward devising effective interventions for epidemics. 
    more » « less
  2. Within the geo-simulation research domain, micro-simulation and agent-based modeling often require the creation of synthetic populations. Creating such data is a time-consuming task and often lacks social networks, which are crucial for studying human interactions (e.g., disease spread, disaster response) while at the same time impacting decision-making. We address these challenges by introducing a Python based method that uses the open data including that from 2020 U.S. Census data to generate a large-scale realistic geographically explicit synthetic population for America’s 50 states and Washington D.C. along with the stylized social networks (e.g., home, work and schools). The resulting synthetic population can be utilized within various geo-simulation approaches (e.g., agent-based modeling), exploring the emergence of complex phenomena through human interactions and further fostering the study of urban digital twins. 
    more » « less
  3. Contagion dynamics on networks are used to study many problems, including disease and virus epidemics, incarceration, obesity, protests and rebellions, needle sharing in drug use, and hurricane and other natural disaster events. Simulators to study these problems range from smaller-scale serial codes to large-scale distributed systems. In recent years, Python-based simulation systems have been built. In this work, we describe a new Python-based agent-based simulator called CSonNet. It differs from codes such as Epidemics on Networks in that it performs discrete time simulations based on the graph dynamical systems formalism. CSonNet is a parallel code; it implements concurrency through an embarrassingly parallel approach of running multiple simulation instances on a user-specified number of forked processes. It has a modeling framework whereby agent models are composed using a set of pre-defined state transition rules. We provide strong-scaling performance results and case studies to illustrate its features. 
    more » « less
  4. Contagion dynamics on networks are used to study many problems, including disease and virus epidemics, incarceration, obesity, protests and rebellions, needle sharing in drug use, and hurricane and other natural disaster events. Simulators to study these problems range from smaller-scale serial codes to large-scale distributed systems. In recent years, Python based simulation systems have been built. In this work, we describe a new Python-based agent-based simulator called CSonNet. It differs from codes such as Epidemics on Networks in that it performs discrete time simulations based on the graph dynamical systems formalism. CSonNet is a parallel code; it implements concurrency through an embarrassingly parallel approach of running multiple simulation instances on a user-specified number of forked processes. It has a modeling framework whereby agent models are composed using a set of pre-defined state transition rules. We provide strong-scaling performance results and case studies to illustrate its features. 
    more » « less
  5. na (Ed.)
    Over the last two decades, there has been a growth in the applications of geographically-explicit agent-based models. One thing such models have in common is the creation of synthetic populations to initialize the artificial worlds in which the agents inhabit. One challenge such models face is that it is often difficult to create reusable geographically-explicit synthetic populations with social networks. In this paper, we introduce a Python based method that generates a reusable geographically-explicit synthetic population dataset along with its social networks. In addition, we present a pipeline for using the population datasets for model initialization. With this pipeline, multiple spatial and temporal scales of geographically-explicit agent-based models are presented focusing on Western New York. Such models not only demonstrate the utility of our synthetic population on commuting patterns but also how social networks can impact the simulation of disease spread and vaccination uptake. By doing so, this pipeline could benefit any modeler wishing to reuse synthetic populations with realistic geographic locations and social networks. 
    more » « less