skip to main content


Title: Gauss: program synthesis by reasoning over graphs
While input-output examples are a natural form of specification for program synthesis engines, they can be imprecise for domains such as table transformations. In this paper, we investigate how extracting readily-available information about the user intent behind these input-output examples helps speed up synthesis and reduce overfitting. We present Gauss, a synthesis algorithm for table transformations that accepts partial input-output examples, along with user intent graphs. Gauss includes a novel conflict-resolution reasoning algorithm over graphs that enables it to learn from mistakes made during the search and use that knowledge to explore the space of programs even faster. It also ensures the final program is consistent with the user intent specification, reducing overfitting. We implement Gauss for the domain of table transformations (supporting Pandas and R), and compare it to three state-of-the-art synthesizers accepting only input-output examples. We find that it is able to reduce the search space by 56×, 73× and 664× on average, resulting in 7×, 26× and 7× speedups in synthesis times on average, respectively.  more » « less
Award ID(s):
1730628 1900968 1908870
NSF-PAR ID:
10310446
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
5
Issue:
OOPSLA
ISSN:
2475-1421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been a significant interest in applying programming-by-example to automate repetitive and tedious tasks. However, due to the incomplete nature of input-output examples, a synthesizer may generate programs that pass the examples but do not match the user intent. In this paper, we propose MARS, a novel synthesis framework that takes as input a multi-layer specification composed by input-output examples, textual description, and partial code snippets that capture the user intent. To accurately capture the user intent from the noisy and ambiguous description, we propose a hybrid model that combines the power of an LSTM-based sequence-to-sequence model with the apriori algorithm for mining association rules through unsupervised learning. We reduce the problem of solving a multi-layer specification synthesis to a Max-SMT problem, where hard constraints encode well-typed concrete programs and soft constraints encode the user intent learned by the hybrid model. We instantiate our hybrid model to the data wrangling domain and compare its performance against Morpheus, a state-of-the-art synthesizer for data wrangling tasks. Our experiments demonstrate that our approach outperforms MORPHEUS in terms of running time and solved benchmarks. For challenging benchmarks, our approach can suggest candidates with rankings that are an order of magnitude better than MORPHEUS which leads to running times that are 15x faster than MORPHEUS. 
    more » « less
  2. Hirschfeld, Robert ; Pape, Tobias (Ed.)
    Program synthesis promises to help software developers with everyday tasks by generating code snippets automatically from input-output examples and other high-level specifications. The conventional wisdom is that a synthesizer must always satisfy the specification exactly. We conjecture that this all-or-nothing paradigm stands in the way of adopting program synthesis as a developer tool: in practice, the user-written specification often contains errors or is simply too hard for the synthesizer to solve within a reasonable time; in these cases, the user is left with a single over-fitted result or, more often than not, no result at all. In this paper we propose a new program synthesis paradigm we call best-effort program synthesis, where the synthesizer returns a ranked list of partially-valid results, i.e. programs that satisfy some part of the specification. To support this paradigm, we develop best-effort enumeration, a new synthesis algorithm that extends a popular program enumeration technique with the ability to accumulate and return multiple partially-valid results with minimal overhead. We implement this algorithm in a tool called BESTER, and evaluate it on 79 synthesis benchmarks from the literature. Contrary to the conventional wisdom, our evaluation shows that BESTER returns useful results even when the specification is flawed or too hard: i) for all benchmarks with an error in the specification, the top three BESTER results contain the correct solution, and ii) for most hard benchmarks, the top three results contain non-trivial fragments of the correct solution. We also performed an exploratory user study, which confirms our intuition that partially-valid results are useful: the study shows that programmers use the output of the synthesizer for comprehension and often incorporate it into their solutions. 
    more » « less
  3. We present a new domain-agnostic synthesis technique for generating programs from input-output examples. Our method, called metric program synthesis, relaxes the well-known observational equivalence idea (used widely in bottom-up enumerative synthesis) into a weaker notion of observational similarity, with the goal of reducing the search space that the synthesizer needs to explore. Our method clusters programs into equivalence classes based on a distance metric and constructs a version space that compactly represents ""approximately correct"" programs. Then, given a ""close enough"" program sampled from this version space, our approach uses a distance-guided repair algorithm to find a program that exactly matches the given input-output examples. We have implemented our proposed metric program synthesis technique in a tool called SyMetric and evaluate it in three different domains considered in prior work. Our evaluation shows that SyMetric outperforms other domain-agnostic synthesizers that use observational equivalence and that it achieves results competitive with domain-specific synthesizers that are either designed for or trained on those domains. 
    more » « less
  4. We present a new general-purpose synthesis technique for generating programs from input-output examples. Our method, called metric program synthesis, relaxes the observational equivalence idea (used widely in bottom-up enumerative synthesis) into a weaker notion of observational similarity, with the goal of reducing the search space that the synthesizer needs to explore. Our method clusters programs into equivalence classes based on an expert-provided distance metric and constructs a version space that compactly represents “approximately correct” programs. Then, given a “close enough” program sampled from this version space, our approach uses a distance-guided repair algorithm to find a program that exactly matches the given input-output examples. We have implemented our proposed metric program synthesis technique in a tool called SyMetric and evaluate it in three different domains considered in prior work. Our evaluation shows that SyMetric outperforms other domain-agnostic synthesizers that use observational equivalence and that it achieves results competitive with domain-specific synthesizers that are either designed for or trained on those domains.

     
    more » « less
  5. The traditional formulation of the program synthesis problem is to find a program that meets a logical correctness specification. When synthesis is successful, there is a guarantee that the implementation satisfies the specification. Unfortunately, synthesis engines are typically monolithic algorithms, and obscure the correspondence between the specification, implementation and user intent. In contrast, humans often include comments in their code to guide future developers towards the purpose and design of different parts of the codebase. In this paper, we introducesubspecificationsas a mechanism to augment the synthesized implementation with explanatory notes of this form. In this model, the user may ask for explanations of different parts of the implementation; the subspecification generated in response is a logical formula that describes the constraints induced on that subexpression by the global specification and surrounding implementation. We develop algorithms to construct and verify subspecifications and investigate their theoretical properties. We perform an experimental evaluation of the subspecification generation procedure, and measure its effectiveness and running time. Finally, we conduct a user study to determine whether subspecifications are useful: we find that subspecifications greatly aid in understanding the global specification, in identifying alternative implementations, and in debugging faulty implementations. 
    more » « less