skip to main content


Title: Kinematic Analysis of a 5-DOF Positioner for Precision Additive Manufacturing
Additive manufacturing, as a viable industrial-production technology, requires multi-DOF positioning with high precision and repeatability for either the printer head, or the part being printed. In this paper we present a novel methodology to analyze the error propagation informing the design of a high-precision robotic 5-DOF positioner for applications in additive manufacturing. We designed our positioner through serial attachment of linear and rotational stages by comparing the precision of three different kinematic arrangements of stages. Within order to minimize positioning errors in Cartesian space, the kinematic sensitivity of the mechanisms end-effector relative to the maximum expected error of each joint was computed, and the kinematic configuration with smallest 6D positioning error at the end-effector was selected. The methodology employed in this paper for the error propagation analysis of serial kinematic chains has a great level of generality and can facilitate the design and optimization of a wide-class of multi-DOF positioners.  more » « less
Award ID(s):
1828355
NSF-PAR ID:
10310566
Author(s) / Creator(s):
;
Date Published:
Journal Name:
44th Mechanisms and Robotics Conference (MR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Delta 3D printers can significantly increase throughput in additive manufacturing by enabling faster and more precise motion compared to conventional serial-axis 3D printers. Further improvements in motion speed and part quality can be realized through model-based feedforward vibration control, as demonstrated on serial-axis 3D printers. However, delta machines have not benefited from model-based controllers because of the difficulty in accurately modeling their position-dependent, coupled nonlinear dynamics. In this paper, we propose an efficient framework to obtain accurate linear parameter-varying models of delta 3D printers at any position within their workspace from a few frequency response measurements. We decompose the dynamics into two sub-models–(1) an experimentally-identified sub-model containing decoupled vibration dynamics; and (2) an analytically-derived sub-model containing coupled dynamics–which are combined into one using receptance coupling. We generalize the framework by extending the analytical model of (2) to account for differing mass profiles and dynamic models of the printer’s end-effector. Experiments demonstrate reasonably accurate predictions of the position-dependent dynamics of a commercial delta printer, augmented with a direct drive extruder, at various positions in its workspace. Note to Practitioners—This work aims to equip high-speed 3D printers, like delta machines, with model-based controllers to complement their speed with high-accuracy. Due to the coupled kinematic chains of the delta, complex control methodologies, some of which require real-time state measurements, are often used to achieve satisfactory control performance. Our modeling approach provides an efficient methodology for obtaining accurate linear models without the need for real-time measurements, thus enabling practitioners to design linear model-based feedforward controllers to achieve the high throughput and accuracy desired in additive manufacturing (AM). The models we develop in this paper are intended for use with feedforward vibration compensation methods, which can be beneficial for both industrial-scale AM machines that have high-powered servo motors and feedback controllers, as well as consumer-grade AM machines which use stepper motors in feedforward control. 
    more » « less
  2. Industrial robots, as mature and high-efficient equipment, have been applied to various fields, such as vehicle manufacturing, product packaging, painting, welding, and medical surgery. Most industrial robots are only operating in their own workspace, in other words, they are floor-mounted at the fixed locations. Just some industrial robots are wall-mounted on one linear rail based on the applications. Sometimes, industrial robots are ceiling-mounted on an X-Y gantry to perform upside-down manipulation tasks. The main objective of this paper is to describe the NeXus, a custom robotic system that has been designed for precision microsystem integration tasks with such a gantry. The system tasks include assembly, bonding, and 3D printing of sensor arrays, solar cells, and microrobotic prototypes. The NeXus consists of a custom designed frame, providing structural rigidity, a large overhead X-Y gantry carrying a 6 degrees of freedom industrial robot, and several other precision positioners and processes. We focus here on the design and precision evaluation of the overhead ceiling-mounted industrial robot of NeXus and its supporting frame. We first simulated the behavior of the frame using Finite Element Analysis (FEA), then experimentally evaluated the pose repeatability of the robot end-effector using three different types of sensors. Results verify that the performance objectives of the design are achieved. 
    more » « less
  3. To facilitate sensing and physical interaction in remote and/or constrained environments, high-extension, lightweight robot manipulators are easier to transport and reach substantially further than traditional serial chain manipulators. We propose a novel planar 3-degree-of-freedom manipulator that achieves low weight and high extension through the use of a pair of spooling bistable tapes, commonly used in self-retracting tape measures, which are pinched together to form a reconfigurable revolute joint. The pinching action flattens the tapes to produce a localized bending region, resulting in a revolute joint that can change its orientation by cable tension and its location on the tapes though friction-driven movement of the pinching mechanism. We present the design, implementation, kinematic modeling, stiffness behavior of the revolute joint, and quasi-static performance of this manipulator. In particular, we demonstrate the ability of the manipulator to reach specified targets in free space, reach a 2D target with various orientations, and maintain an end-effector angle or stationary bending point while changing the other. The long-term goal of this work is to integrate the manipulator with an aerial robot to enable more capable aerial manipulation. 
    more » « less
  4. null (Ed.)
    This paper addresses the problem of autonomously deploying an unmanned aerial vehicle in non-trivial settings, by leveraging a manipulator arm mounted on a ground robot, acting as a versatile mobile launch platform. As real-world deployment scenarios for micro aerial vehicles such as searchand- rescue operations often entail exploration and navigation of challenging environments including uneven terrain, cluttered spaces, or even constrained openings and passageways, an often arising problem is that of ensuring a safe take-off location, or safely fitting through narrow openings while in flight. By facilitating launching from the manipulator end-effector, a 6- DoF controllable take-off pose within the arm workspace can be achieved, which allows to properly position and orient the aerial vehicle to initialize the autonomous flight portion of a mission. To accomplish this, we propose a sampling-based planner that respects a) the kinematic constraints of the ground robot / manipulator / aerial robot combination, b) the geometry of the environment as autonomously mapped by the ground robots perception systems, and c) accounts for the aerial robot expected dynamic motion during takeoff. The goal of the proposed planner is to ensure autonomous collision-free initialization of an aerial robotic exploration mission, even within a cluttered constrained environment. At the same time, the ground robot with the mounted manipulator can be used to appropriately position the take-off workspace into areas of interest, effectively acting as a carrier launch platform. We experimentally demonstrate this novel robotic capability through a sequence of experiments that encompass a micro aerial vehicle platform carried and launched from a 6-DoF manipulator arm mounted on a four-wheel robot base. 
    more » « less
  5. null (Ed.)
    This paper proposes a finite-precision decoding method for low-density parity-check (LDPC) codes that features the three steps of Reconstruction, Computation, and Quantization (RCQ). Unlike Mutual-Information-Maximization Quantized Belief Propagation (MIM-QBP), RCQ can approximate either belief propagation or Min-Sum decoding. MIM-QBP decoders do not work well when the fraction of degree-2 variable nodes is large. However, sometimes a large fraction of degree-2 variable nodes is used to facilitate a fast encoding structure, as seen in the IEEE 802.11 standard and the DVB-S2 standard. In contrast to MIM-QBP, the proposed RCQ decoder may be applied to any off-the-shelf LDPC code, including those with a large fraction of degree-2 variable nodes. Simulations show that a 4-bit Min-Sum RCQ decoder delivers frame error rate (FER) performance within 0.1 dB of floating point belief propagation (BP) for the IEEE 802.11 standard LDPC code in the low SNR region. The RCQ decoder actually outperforms floating point BP and Min-Sum in the high SNR region were FER less than 10 −5 . This paper also introduces Hierarchical Dynamic Quantization (HDQ) to design the time-varying non-uniform quantizers required by RCQ decoders. HDQ is a low-complexity design technique that is slightly sub-optimal. Simulation results comparing HDQ and optimal quantization on the symmetric binary-input memoryless additive white Gaussian noise channel show a mutual information loss of less than 10 −6 bits, which is negligible in practice. 
    more » « less