Abstract Animal communication requires senders to transmit signals through the environment to conspecific receivers, which then leads to context-dependent behavioral decisions. Sending and receiving sensory information in social contexts, however, can be dramatically influenced by an individual’s internal state, particularly in species that cycle in and out of breeding or other physiological condition like nutritional state or social status. Modulatory substances like steroids, peptides, and biogenic amines can influence both the substrates used for sending social signals (e.g., motivation centers, sensorimotor pathways, and muscles) as well as the peripheral sensory organs and central neural circuitry involved in the reception of this information and subsequent execution of behavioral responses. This issue highlights research from neuroethologists on the topic of modulation of sending and receiving social signals and demonstrates that it can occur in both males and females, in different senses at both peripheral sensory organs and the brain, at different levels of biological organization, on different temporal scales, in various social contexts, and across many diverse vertebrate taxa. Modifying a signal produced by a sender or how that signal is perceived in a receiver provides flexibility in communication and has broad implications for influencing social decisions like mate choice, which ultimately affects reproductive fitness and species persistence. This phenomenon of modulators and internal physiological state impacting communication abilities is likely more widespread than currently realized and we hope this issue inspires others working on diverse systems to examine this topic from different perspectives. An integrative and comparative approach will advance discovery in this field and is needed to better understand how endocrine modulation contributes to sexual selection and the evolution of animal communication in general.
more »
« less
Spatio-temporal Dynamics in Animal Communication: A Special Issue Arising from a Unique Workshop-Symposium Model
Synopsis Investigating how animals navigate space and time is key to understanding communication. Small differences in spatial positioning or timing can mean the difference between a message received and a missed connection. However, these spatio-temporal dynamics are often overlooked or are subject to simplifying assumptions in investigations of animal signaling. This special issue addresses this significant knowledge gap by integrating work from researchers with disciplinary backgrounds in neuroscience, cognitive ecology, sensory ecology, computer science, evolutionary biology, animal behavior, and philosophy. This introduction to the special issue outlines the novel questions and approaches that will advance our understanding of spatio-temporal dynamics of animal communication. We highlight papers that consider the evolution of spatio-temporal dynamics of behavior across sensory modalities and social contexts. We summarize contributions that address the neural and physiological mechanisms in senders and receivers that shape communication. We then turn to papers that introduce cutting edge technologies that will revolutionize our ability to track spatio-temporal dynamics of individuals during social encounters. The interdisciplinary collaborations that gave rise to these papers emerged in part from a novel workshop-symposium model, which we briefly summarize for those interested in fostering syntheses across disciplines.
more »
« less
- PAR ID:
- 10310678
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- Volume:
- 61
- Issue:
- 3
- ISSN:
- 1540-7063
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ageing affects almost all aspects of life and therefore is an important process across societies, human and non-human animal alike. This article introduces new research exploring the complex interplay between individual-level ageing and demography, and the consequences this interplay holds for the structure and functioning of societies across various natural populations. We discuss how this Special Issue provides a foundation for integrating perspectives from evolutionary biology, behavioural ecology and demography to provide new insights into how ageing shapes individuals’ social behaviour and social associations, and how this in turn impacts social networks, social processes (such as disease or information transfer) and fitness. Through examining these topics across taxa, from invertebrates to birds and mammals, we outline how contemporary studies are using natural populations to advance our understanding of the relationship between age and society in innovative ways. We highlight key emerging research themes from this Special Issue, such as how sociality affects lifespan and health, the genetic and ecological underpinnings of social ageing and the adaptive strategies employed by different species. We conclude that this Special Issue underscores the importance of studying social ageing using diverse systems and interdisciplinary approaches for advancing evolutionary and ecological insights into both ageing and sociality more generally. This article is part of the discussion meeting issue ‘Understanding age and society using natural populations ’.more » « less
-
Studying individual-level interactions can transform our understanding of avian mixed-species flocksAbstract Avian mixed-species flocks are ubiquitous across habitats and a model for studying how heterospecific sociality influences the behavior and composition of animal communities. Here, we review the literature on mixed-species flocks and argue that a renewed focus on individual-level interactions among flock members can transform our understanding of this iconic, avian social system. Specifically, we suggest that an individual perspective will further our understanding of (1) how inter- and intraspecific variation in flock participation links to fitness costs and benefits, (2) the implications of familiarity between individuals in structuring mixed-species flock communities, and (3) how social roles within mixed-species flocks are related to social behavior within and across species. We summarize studies that use an individual perspective in each of these areas and discuss knowledge from conspecific social behavior to posit more broadly how individuals may shape mixed-species flocks. We encourage research approaches that incorporate individual variation in traits, relationships, and social roles in their assessment of mixed-species flocking dynamics. We propose that the analysis of individual variation in behavior will be particularly important for explicitly identifying fitness outcomes that led to the evolution of mixed-species flocks, which in turn affect community structure and resilience.more » « less
-
This theme issue features 18 papers exploring ecological interactions, encompassing metabolic, social, and spatial connections alongside traditional trophic networks. This integration enriches food web research, offering insights into ecological dynamics. By examining links across organisms, populations, and ecosystems, a hierarchical approach emerges, connecting horizontal effects within organizational levels vertically across biological organization levels. The inclusion of interactions involving humans is a key focus, highlighting the need for their integration into ecology given the complex interactions between human activities and ecological systems in the Anthropocene. The comprehensive exploration in this theme issue sheds light on the interconnectedness of ecological systems and the importance of considering diverse interactions in understanding ecosystem dynamics. This article is part of the theme issue ‘Connected interactions: enriching food web research by spatial and social interactions’.more » « less
-
Abstract Environmental gradients have played a pivotal role in the history and development of plant ecology and are useful for testing ecological and evolutionary theory. Área de Conservación Guanacaste is a spatio‐temporal mosaic of forests that have evolved continuously across elevation, topography, soil types, succession, and annual and inter‐annual climatic change. Studies of plant ecology across diverse gradients ofACGhave shaped functional ecology, successional theory, community assembly, plant–herbivore interactions, among many other fields. In this review, we synthesize the, perhaps overlooked, role plant ecological studies ofACGhave had on our understanding of tropical forest dynamics. We outline present‐day processes that will have major impacts on forest dynamics ofACGin the future and highlight howACGwill continue to shape future research priorities in plant ecology. Abstract in Spanish is available with online material.more » « less
An official website of the United States government

