skip to main content

Title: Bubble bag end: a bubbly resolution of curvature singularity
A bstract We construct a family of smooth charged bubbling solitons in $$ \mathbbm{M} $$ M 4 ×T 2 , four-dimensional Minkowski with a two-torus. The solitons are characterized by a degeneration pattern of the torus along a line in $$ \mathbbm{M} $$ M 4 defining a chain of topological cycles. They live in the same parameter regime as non-BPS non-extremal four-dimensional black holes, and are ultracompact with sizes ranging from miscroscopic to macroscopic scales. The six-dimensional framework can be embedded in type IIB supergravity where the solitons are identified with geometric transitions of non-BPS D1-D5-KKm bound states. Interestingly, the geometries admit a minimal surface that smoothly opens up to a bubbly end of space. Away from the solitons, the solutions are indistinguishable from a new class of singular geometries. By taking a limit of large number of bubbles, the soliton geometries can be matched arbitrarily close to the singular spacetimes. This provides the first classical resolution of a curvature singularity beyond the framework of supersymmetry and supergravity by blowing up topological cycles wrapped by fluxes at the vicinity of the singularity.  more » « less
Award ID(s):
1820784 2112699
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of High Energy Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We propose a holographic description of $$ \mathcal{N} $$ N = 4 super Yang-Mills on the four-dimensional real projective space $$ \mathbbm{RP} $$ RP 4 . We first construct the dual background in the framework of five-dimensional $$ \mathcal{N} $$ N = 8 gauged supergravity, and then uplift it to a new one-half BPS solution of type IIB supergravity. A salient feature of our solution is the presence of a bulk naked singularity whose local behavior resembles that of an O1 − plane in flat space. 
    more » « less
  2. A bstract We construct the first smooth bubbling geometries using the Weyl formalism. The solutions are obtained from Einstein theory coupled to a two-form gauge field in six dimensions with two compact directions. We classify the charged Weyl solutions in this framework. Smooth solutions consist of a chain of Kaluza-Klein bubbles that can be neutral or wrapped by electromagnetic fluxes, and are free of curvature and conical singularities. We discuss how such topological structures are prevented from gravitational collapse without struts. When embedded in type IIB, the class of solutions describes D1-D5-KKm solutions in the non-BPS regime, and the smooth bubbling solutions have the same conserved charges as a static four-dimensional non-extremal Cvetic-Youm black hole. 
    more » « less
  3. A bstract We construct large classes of non-BPS smooth horizonless geometries that are asymptotic to AdS 3 × S 3 × T 4 in type IIB supergravity. These geometries are supported by electromagnetic flux corresponding to D1-D5 charges. We show that Einstein equations for systems with eight commuting Killing vectors decompose into a set of Ernst equations, thereby admitting an integrable structure. This feature, which can a priori be applied to other $$ {\textrm{AdS}}_D\times \mathcal{C} $$ AdS D × C settings in supergravity, allows us to use solution-generating techniques associated with the Ernst formalism. We explicitly derive solutions by applying the charged Weyl formalism that we have previously developed. These are sourced internally by a chain of bolts that correspond to regions where the orbits of the commuting Killing vectors collapse smoothly. We show that these geometries can be interpreted as non-BPS T 4 and S 3 deformations on global AdS 3 × S 3 × T 4 that are located at the center of AdS 3 . These non-BPS deformations can be made arbitrarily small and should therefore correspond to non-supersymmetric operators in the D1-D5 CFT. Finally, we also construct interesting bound states of non-extremal BTZ black holes connected by regular bolts. 
    more » « less
  4. We define a suitably tame class of singular symplectic curves in 4-manifolds, namely those whose singularities are modeled on complex curve singularities. We study the corresponding symplectic isotopy problem, with a focus on rational curves with irreducible singularities (rational cuspidal curves) in the complex projective plane. We prove that every such curve is isotopic to a complex curve in degrees up to five, and for curves with one singularity whose link is a torus knot. Classification results of symplectic isotopy classes rely on pseudo-holomorphic curves together with a symplectic version of birational geometry of log pairs and techniques from four-dimensional topology. 
    more » « less
  5. null (Ed.)
    A bstract In an earlier paper, we constructed the genus-two amplitudes for five external massless states in Type II and Heterotic string theory, and showed that the α ′ expansion of the Type II amplitude reproduces the corresponding supergravity amplitude to leading order. In this paper, we analyze the effective interactions induced by Type IIB superstrings beyond supergravity, both for U(1) R -preserving amplitudes such as for five gravitons, and for U(1) R -violating amplitudes such as for one dilaton and four gravitons. At each order in α ′, the coefficients of the effective interactions are given by integrals over moduli space of genus-two modular graph functions, generalizing those already encountered for four external massless states. To leading and sub-leading orders, the coefficients of the effective interactions D 2 ℛ 5 and D 4 ℛ 5 are found to match those of D 4 ℛ 4 and D 6 ℛ 4 , respectively, as required by non-linear supersymmetry. To the next order, a D 6 ℛ 5 effective interaction arises, which is independent of the supersymmetric completion of D 8 ℛ 4 , and already arose at genus one. A novel identity on genus-two modular graph functions, which we prove, ensures that up to order D 6 ℛ 5 , the five-point amplitudes require only a single new modular graph function in addition to those needed for the four-point amplitude. We check that the supergravity limit of U(1) R -violating amplitudes is free of UV divergences to this order, consistently with the known structure of divergences in Type IIB supergravity. Our results give strong consistency tests on the full five-point amplitude, and pave the way for understanding S-duality beyond the BPS-protected sector. 
    more » « less