skip to main content

Title: Expansive Modeling: Broadening the scope of modeling in K-12 education
Modeling is generally recognized as the core disciplinary practice of science. Through examinations of rich learning environments which expand the boundaries of modeling and the practices connected to it, researchers are broadening what modeling means in disciplinary settings. This interactive session brings together a diverse spectrum of scholars to share the practices they have used to expand modeling, how they were used in their curriculum, and the impact they had on learning. This session will serve as a rich opportunity for discussion to help advance the state of the field around what counts as modeling and the role it can play in learning.
Authors:
Editors:
de Vries, E.
Award ID(s):
1742257
Publication Date:
NSF-PAR ID:
10311176
Journal Name:
International conference of the learning sciences
Volume:
1
Issue:
1
ISSN:
1573-4552
Sponsoring Org:
National Science Foundation
More Like this
  1. Gresalfi, M. ; Horn, I. S. (Ed.)
    There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the field of STEM and CT integration.
  2. Gresalfi, M. ; Horn, I. S. (Ed.)
    There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the field of STEM and CT integration.
  3. Background/Context: Bi/multilingual students’ STEM learning is better supported when educators leverage their language and cultural practices as resources, but STEM subject divisions have been historically constructed based on oppressive, dominant values and exclude the ways of knowing of nondominant groups. Truly promoting equity requires expanding and transforming STEM disciplines. Purpose/Objective/Research Question/Focus of Study: This article contributes to efforts to illuminate emergent bi/multilingual students’ ways of knowing, languaging, and doing in STEM. We follow the development of syncretic literacies in relation to translanguaging practices, asking, How do knowledges and practices from different communities get combined and reorganized by students and teachers in service of new modeling practices? Setting and Participants: We focus on a seventh-grade science classroom, deliberately designed to support syncretic literacies and translanguaging practices, where computer science concepts were infused into the curriculum through modeling activities. The majority of the students in the bilingual program had arrived in the United States at most three years before enrolling, from the Caribbean and Central and South America. Research Design: We analyze one lesson that was part of a larger research–practice partnership focused on teaching computer science through leveraging translanguaging practices and syncretic literacies. The lesson was a modeling and computing activitymore »codesigned by the teacher and two researchers about post–Hurricane María outmigration from Puerto Rico. Analysis used microethnographic methods to trace how students assembled translanguaging, social, and schooled practices to make sense of and construct models. Findings/Results: Findings show how students assembled representational forms from a variety of practices as part of accomplishing and negotiating both designed and emergent goals. These included sensemaking, constructing, explaining, justifying, and interpreting both the physical and computational models of migration. Conclusions/Recommendations: Implications support the development of theory and pedagogy that intentionally make space for students to engage in meaning-making through translanguaging and syncretic practices in order to provide new possibilities for lifting up STEM learning that may include, but is not constrained by, disciplinary learning. Additional implications for teacher education and student assessment practices call for reconceptualizing schooling beyond day-to-day curriculum as part of making an ontological shift away from prioritizing math, science, and CS disciplinary and language objectives as defined by and for schooling, and toward celebrating, supporting, and centering students’ diverse, syncretic knowledges and knowledge use.« less
  4. At the start of their work for the National Science Foundation’s Revolutionizing Engineering Departments (RED) Program (IUSE/Professional Formation of Engineers, NSF 19-614), RED teams face a variety of challenges. Not only must they craft a shared vision for their projects and create strategic partnerships across their campuses to move the project forward, they must also form a new team and communicate effectively within the team. Our work with RED teams over the past 5 years has highlighted the common challenges these teams face at the start, and for that reason, we have developed the RED Start Up Session, a ½ day workshop that establishes best practices for RED teams’ work and allows for early successes in these five year projects. As the RED Participatory Action Research team (REDPAR)--comprised of individuals from Rose-Hulman Institute of Technology and the University of Washington--we have taken the research data collected as we work with RED teams and translated it into practical strategies that can benefit RED teams as they embark on their projects. This presentation will focus on the content and organization of the Start Up Session and how these lessons learned can contribute to the furthering of the goals of the RED program:more »to design “revolutionary new approaches to engineering education,” focusing on “organizational and cultural change within the departments, involving students, faculty, staff, and industry in rethinking what it means to provide an engineering program.” We see the Start Up Session as an important first step in the RED team establishing an identity as a team and learning how to work effectively together. We also encourage new RED teams to learn from the past, through a panel discussion with current RED team members who fill various roles on the teams: engineering education researcher, project manager, project PI, disciplinary faculty, social scientist, and others. By presenting our findings from the Start Up Session at ASEE, we believe we can contribute to the national conversation regarding change in engineering education as it is evidenced in the RED team’s work.« less
  5. As K-12 engineering education becomes more ubiquitous in the U.S, increased attention has been paid to preparing the heterogeneous group of in-service teachers who have taken on the challenge of teaching engineering. Standards have emerged for professional development along with research on teacher learning in engineering that call for teachers to facilitate and support engineering learning environments. Given that many teachers may not have experienced engineering practice calls have been made to engage teaches K-12 teachers in the “doing” of engineering as part of their preparation. However, there is a need for research studying more specific nature of the “doing” and the instructional implications for engaging teachers in “doing” engineering. In general, to date, limited time and constrained resources necessitate that many professional development programs for K-12 teachers to engage participants in the same engineering activities they will enact with their students. While this approach supports teachers’ familiarity with curriculum and ability to anticipate students’ ideas, there is reason to believe that these experiences may not be authentic enough to support teachers in developing a rich understanding of the “doing” of engineering. K-12 teachers are often familiar with the materials and curricular solutions, given their experiences as adults, which meansmore »that engaging in the same tasks as their students may not be challenging enough to develop their understandings about engineering. This can then be consequential for their pedagogy: In our prior work, we found that teachers’ linear conceptions of the engineering design process can limit them from recognizing and supporting student engagement in productive design practices. Research on the development of engineering design practices with adults in undergraduate and professional engineering settings has shown significant differences in how adults approach and understand problems. Therefore, we conjectured that engaging teachers in more rigorous engineering challenges designed for adult engineering novices would more readily support their developing rich understandings of the ways in which professional engineers move through the design process. We term this approach meaningful engineering for teachers, and it is informed by work in science education that highlights the importance of learning environments creating a need for learners to develop and engage in disciplinary practices. We explored this approach to teachers’ professional learning experiences in doing engineering in an online graduate program for in-service teachers in engineering education at Tufts University entitled the Teacher Engineering Education Program (teep.tufts.edu). In this exploratory study, we asked: 1. How did teachers respond to engaging in meaningful engineering for teachers in the TEEP program? 2. What did teachers identify as important things they learned about engineering content and pedagogy? This paper focuses on one theme that emerged from teachers’ reflections. Our analysis found that teachers reported that meaningful engineering supported their development of epistemic empathy (“the act of understanding and appreciating someone's cognitive and emotional experience within an epistemic activity”) as a result of their own affective experiences in doing engineering that required significant iteration as well as using novel robotic materials. We consider how epistemic empathy may be an important aspect of teacher learning in K-12 engineering education and the potential implications for designing engineering teacher education.« less