skip to main content


Title: Bridging the Divide: Exploring Affordances for Interdisciplinary Learning
This study investigates how the design of hybrid mathematics and computational activities influences the ways in which students leverage ideas from both disciplinary topics. We examine two design cycles of a computer programming summer camp for middle school students which foreground computational thinking and then mathematics alongside computational thinking respectively. We review the rationale for each design iteration, the trends we saw in students’ engagement, and the implications for students’ reasoning. Findings of this study demonstrate the importance of thinking critically about the boundary objects that are included in design that support students to make bridges between multiple disciplinary practices.  more » « less
Award ID(s):
1742257
NSF-PAR ID:
10311206
Author(s) / Creator(s):
Editor(s):
de Vries, E.
Date Published:
Journal Name:
Computersupported collaborative learning
Volume:
1
Issue:
1
ISSN:
1573-4552
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work in progress is motivated by a self-study conducted at Texas State University. The study revealed that the average second year science, technology, engineering and math (STEM) student retention rate is 56% vs. 67% for all majors, and that 16% of STEM majors are female while 57% of all undergraduate students are female. Using these statistics, the authors identified the need to offer motivating experiences to freshman in STEM while creating a sense of community among other STEM students. This paper reports on the impact of two interventions designed by the authors and aligned with this need. The interventions are: (1) a one-day multi- disciplinary summer orientation (summer15) to give participants the opportunity to undertake projects that demonstrate the relevance of spatial and computational thinking skills and (2) a subsequent six-week spatial visualization skills training (fall 2015) for students in need to refine these skills. The interventions have spatial skills as a common topic and introduce participants to career applications through laboratory tours and talks. Swail et al.1 mentions that the three elements to address in order to best support students’ persistence and achievement are cognitive, social, and institutional factors. The interventions address all elements to some extent and are part of an NSF IUSE grant (2015-2018) to improve STEM retention. The summer 2015 orientation was attended by 17 freshmen level students in Physics, Engineering, Engineering Technology, and Computer Science. The orientation was in addition to “Bobcat Preview”, a separate mandatory one-week length freshman orientation that includes academic advising and educational and spirit sessions to acclimate students to the campus. The effectiveness of the orientation was assessed through exit surveys administered to participants. Current results are encouraging; 100% of the participants answered that the orientation created a space to learn about science and engineering, facilitated them to make friends and encouraged peer interaction. Eighty percent indicated that the orientation helped them to build confidence in their majors. Exit survey findings were positively linked to a former exit survey from an orientation given to a group of 18 talented and low-income students in 2013. The training on refining spatial visualization skills connects to the summer orientation by its goals. It offers freshman students in need to refine spatial skills a further way to increase motivation to STEM and create community among other students. It is also an effective approach to support students’ persistence and achievement. Bairaktarova et al.2 mention that spatial skills ability is gradually becoming a standard assessment of an individual’s likelihood to succeed as an engineer. Metz et al.3 report that well-developed spatial skills have been shown to lead to success in Engineering and Technology, Computer Science, Chemistry, Computer Aided Design and Mathematics. The effectiveness of the fall 2015 training was assessed through comparison between pre and post tests results and exit surveys administered to participants. All participants improved their pre-training scores and average improvement in students’ scores was 18.334%. 
    more » « less
  2. This work in progress is motivated by a self-study conducted at Texas State University. The study revealed that the average second year science, technology, engineering and math (STEM) student retention rate is 56% vs. 67% for all majors, and that 16% of STEM majors are female while 57% of all undergraduate students are female. Using these statistics, the authors identified the need to offer motivating experiences to freshman in STEM while creating a sense of community among other STEM students. This paper reports on the impact of two interventions designed by the authors and aligned with this need. The interventions are: (1) a one-day multi- disciplinary summer orientation (summer15) to give participants the opportunity to undertake projects that demonstrate the relevance of spatial and computational thinking skills and (2) a subsequent six-week spatial visualization skills training (fall 2015) for students in need to refine these skills. The interventions have spatial skills as a common topic and introduce participants to career applications through laboratory tours and talks. Swail et al.[1] mentions that the three elements to address in order to best support students’ persistence and achievement are cognitive, social, and institutional factors. The interventions address all elements to some extent and are part of an NSF IUSE grant (2015-2018) to improve STEM retention. The summer 2015 orientation was attended by 17 freshmen level students in Physics, Engineering, Engineering Technology, and Computer Science. The orientation was in addition to “Bobcat Preview”, a separate mandatory one-week length freshman orientation that includes academic advising and educational and spirit sessions to acclimate students to the campus. The effectiveness of the orientation was assessed through exit surveys administered to participants. Current results are encouraging; 100% of the participants answered that the orientation created a space to learn about science and engineering, facilitated them to make friends and encouraged peer interaction. Eighty percent indicated that the orientation helped them to build confidence in their majors. Exit survey findings were positively linked to a former exit survey from an orientation given to a group of 18 talented and low-income students in 2013. The training on refining spatial visualization skills connects to the summer orientation by its goals. It offers freshman students in need to refine spatial skills a further way to increase motivation to STEM and create community among other students. It is also an effective approach to support students’ persistence and achievement. Bairaktarova et al.[2] mention that spatial skills ability is gradually becoming a standard assessment of an individual’s likelihood to succeed as an engineer. Metz et al.[3] report that well-developed spatial skills have been shown to lead to success in Engineering and Technology, Computer Science, Chemistry, Computer Aided Design and Mathematics. The effectiveness of the fall 2015 training was assessed through comparison between pre and post tests results and exit surveys administered to participants. All participants improved their pre-training scores and average improvement in students’ scores was 18.334%. 
    more » « less
  3. null (Ed.)
    This NSF EAGER research paper investigates how undergraduate STEM and engineering students’ learning trajectories evolve over time, from 1st to senior year, along a novice to expert spectrum. We borrow the idea of “learning trajectories” from mathematics education that can paint the evolution of students’ knowledge and skills over time over a set of learning experiences. Curricula for undergraduate engineering programs can reflect an intended pathway of knowledge construction within a discipline. We intend our study of individual students within undergraduate STEM and engineering programs can highlight how this may happen in situ and how it may be similar or might differ from a given, prescribed programs of study among disciplines. We use a theoretical framework based in adaptive expertise and design thinking adaptive expertise to develop a design learning continuum further. Envisioned routes through disciplinary undergraduate curricula and student conceptions of their design process are explored through qualitative, semi-structured interviews with undergraduate 1st year and senior year students across STEM, engineering and non-STEM field such as computer science, mechanical engineering, general engineering, mathematics, science, English, and art. We also conduct similar interviews with faculty in these fields who are responsible and knowledgeable for undergraduate programs about their perceived benefits for the structure of their program’s curriculum. Additional information is collected from noticing the organizational and pedagogical structures of the relative undergraduate curriculum. Initial findings/outcomes suggest that traditions to knowledge construction both differ across disciplinary approaches and have similarities across non-obvious disciplinary relationships. Faculty have a firm understanding of how one class chains from one to another; students have less of a field of view for how mindful chunks of knowledge combine together. 
    more » « less
  4. As computer-focused policies and trends become more popular in schools, more students access math curriculum online. While computer-based programs may be responsive to some student input, their algorithmic basis can make it more difficult for them to be prepared for divergent student thinking, especially in comparison to a teacher. Consider programs that assess student work by judging how well it matches pre-set answers. Unless designed and enacted in classrooms with care, computer-based curriculum materials might encourage students to think about mathematics in pre-determined ways. How do students approach the process of mathematics while using online materials, especially in terms of engaging in original thought? Drawing on Pickering’s (1995) dance of agency and Sinclair’s (2001) conception of students as path-finders or track-takers, I define two modes of mathematical behavior: trail-taking and bushwhacking. While trail-taking, students follow an established approach, often relying on Pickering’s (1995) disciplinary agency, wherein the mathematics “leads [them] through a series of manipulations” (p. 115). The series of manipulations can be seen as a trail that a student may choose to follow. Bushwhacking, on the other hand, refers to actions a student takes of their own invention. It is possible that, unknown to the student, these actions have been taken before by others. In bushwhacking, the student possesses agency, which Pickering (1995) describes as active (rather than passive) and as hallmarked by “choice and discretion” (p. 117). In this study, students worked in several dynamic geometric environments (DGEs) during a geometry lesson about the midline theorem. The lesson was originally recorded as part of a larger study designing mathematically captivating lessons. Students accessed both problems and online addresses for corresponding DGEs via a printed packet. Students interacted with the DGEs on individual laptops, but were seated in groups of three or four. Passages of group conversations in which students transitioned between trail-taking and bushwhacking were selected for closer analysis, which involved identifying evidence of each mode and highlighting the curricular or social forces that may have contributed to shifts between modes. Of particular interest were episodes in which students asked one another to share results, which led to students reconsidering previously set approaches, and episodes in which students interacted with DGEs containing a relatively high proportion of drag-able components, which corresponded to some students working in bushwhacking mode, spontaneously suggesting and revising approaches for manipulating the DGE (e.g., “unless you make this parallel to the bottom, but I don’t think you... yes you can.”). Both types of episodes were found in multiple groups’ conversations. Further analysis of student interactions with tasks, especially with varying levels of student control and sharing, could serve to inform future computer-based task design aimed to encourage students to productively engage in bushwhacking while problem-solving. 
    more » « less
  5. Enyedy, Noel (Ed.)
    In this paper, I discuss undergraduate students’ engagement in basic Python programming while solving combinatorial problems. Students solved tasks that were designed to involve programming, and they were encouraged to engage in activities of prediction and reflection. I provide data from two paired teaching experiments, and I outline how the task design and instructional interventions particularly supported students’ combinatorial reasoning. I argue that emergent computational representations and the prompts for prediction and reflection were especially useful in supporting students’ reasoning about fundamental combinatorial ideas. I argue that this particular mathematical example informs broader notions of disciplinary reflexivity and representational heterogeneity, providing insight into computational thinking practices in the domain of mathematics. Ultimately, I aim to explore the nature of computing and enumeration, shedding light on why the two disciplines are particularly well-suited to support each other. I conclude with implications and avenues for future research. 
    more » « less