skip to main content


Title: A DELAY NONAUTONOMOUS PREDATOR–PREY MODEL FOR THE EFFECTS OF FEAR, REFUGE AND HUNTING COOPERATION
Fear of predation may assert privilege to prey species by restricting their exposure to potential predators, meanwhile it can also impose costs by constraining the exploration of optimal resources. A predator–prey model with the effect of fear, refuge, and hunting cooperation has been investigated in this paper. The system’s equilibria are obtained and their local stability behavior is discussed. The existence of Hopf-bifurcation is analytically shown by taking refuge as a bifurcation parameter. There are many ecological factors which are not instantaneous processes, and so, to make the system more realistic, we incorporate three discrete time delays: in the effect of fear, refuge and hunting cooperation, and analyze the delayed system for stability and bifurcation. Moreover, for environmental fluctuations, we further modify the delayed system by incorporating seasonality in the fear, refuge and cooperation. We have analyzed the seasonally forced delayed system for the existence of a positive periodic solution. In the support of analytical results, some numerical simulations are carried out. Sensitivity analysis is used to identify parameters having crucial impacts on the ecological balance of predator–prey interactions. We find that the rate of predation, fear, and hunting cooperation destabilizes the system, whereas prey refuge stabilizes the system. Time delay in the cooperation behavior generates irregular oscillations whereas delay in refuge stabilizes an otherwise unstable system. Seasonal variations in the level of fear and refuge generate higher periodic solutions and bursting patterns, respectively, which can be replaced by simple 1-periodic solution if the cooperation and fear are also allowed to vary with time in the former and latter situations. Higher periodicity and bursting patterns are also observed due to synergistic effects of delay and seasonality. Our results indicate that the combined effects of fear, refuge and hunting cooperation play a major role in maintaining a healthy ecological environment.  more » « less
Award ID(s):
1716802 2052820 1558127
NSF-PAR ID:
10311207
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Biological Systems
ISSN:
0218-3390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we propose a predator-prey system with a Holling type Ⅱ functional response and study its dynamics when the prey exhibits vigilance behavior to avoid predation and predators exhibit cooperative hunting. We provide conditions for existence and the local and global stability of equilibria. We carry out detailed bifurcation analysis and find the system to experience Hopf, saddle-node, and transcritical bifurcations. Our results show that increased prey vigilance can stabilize the system, but when vigilance levels are too high, it causes a decrease in the population density of prey and leads to extinction. When hunting cooperation is intensive, it can destabilize the system, and can also induce bi-stability phenomenon. Furthermore, it can reduce the population density of both prey and predators and also change the stability of a coexistence state. We provide numerical experiments to validate our theoretical results and discuss ecological implications.

     
    more » « less
  2. Abstract

    Spatiotemporal variation in predation risk arises from interactions between landscape heterogeneity, predator densities and predator hunting mode, generating landscapes of fear for prey species that can have important effects on prey behaviour and ecosystem dynamics.

    As widespread apex predators, humans present a significant source of risk for hunted animal populations. Spatiotemporal patterns of risk from hunters can overlap or contrast with patterns of risk from other predators. Human infrastructure can also reshape spatial patterns of risk by facilitating or impeding hunter or predator movement, or deterring predators that are themselves wary of humans.

    We examined how anthropogenic and natural landscape features interact with hunting modes of rifle hunters and mountain lionsPuma concolorto generate spatiotemporal patterns of risk for their primary prey. We explored the implications of human‐modified landscapes of fear for Columbian black‐tailed deerOdocoileus hemionus columbianusin Mendocino County, California. We used historical harvest records, hunter GPS trackers and camera trap records of mountain lions to model patterns of risk for deer. We then used camera traps to examine deer spatial and temporal activity patterns in response to this variation in risk.

    Hunters and mountain lions exhibited distinct, contrasting patterns of spatiotemporal activity. Risk from rifle hunters, who rely on long lines of sight, was highest in open grasslands and near roads and was confined to the daytime. Risk from mountain lions, an ambush predator, was highest in dense shrubland habitat, farther from developed areas, and during the night and crepuscular periods. Areas of human settlement provided a refuge from both hunters and mountain lions. We found no evidence that deer avoided risk in space at the scale of our observations, but deer adjusted their temporal activity patterns to reduce the risk of encounters with humans and mountain lions in areas of higher risk.

    Our study demonstrates that interactions between human infrastructure, habitat cover and predator hunting mode can result in distinct spatial patterns of predation risk from hunters and other predators that may lead to trade‐offs for prey species. However, distinct diel activity patterns of predators may create vacant hunting domains that reduce costly trade‐offs for prey. Our study highlights the importance of temporal partitioning as a mechanism of predation risk avoidance.

     
    more » « less
  3. Abstract

    We investigate the effect of nonlocal intraspecific prey competition on the spatiotemporal dynamics of a Holling–Tanner predator–prey model with diffusion. We first establish the criteria for Hopf, Turing, double‐Hopf, and Turing–Hopf bifurcations, and determine the stable and unstable regions of the positive equilibrium. For Turing–Hopf bifurcation, by analyzing the normal form truncated to the third order, we derive that, with strong nonlocal interaction, the system exhibits the tristable phenomena, that is, the coexistence of a stable spatially nonhomogeneous periodic orbit and two nonconstant stable steady states, as well as the existence of periodic orbits with two spatial wave frequencies induced by the nonlocal interaction. The main analytical difficulty arises from the nonlocal interaction that prevents the direct application of formulas for the coefficients of the normal form. Biologically, the emerging spatiotemporal patterns suggest that the global intraspecific competition can promote the coexistence of the prey and predator by allowing the prey maintain a critical total population size, which may provide an alternative approach in explaining the group formation of some prey species under the risk of predation. Some coexistence patterns are destabilized by introducing another prey species with local intraspecific competition, leading to the coexistence of two preys and one predator, namely, the prey with nonlocal interaction is concentrated at a single spatial location, and the other prey is distributed uniformly in the rest of the habitat. Accordingly, the predator is forced to change its behavior as well.

     
    more » « less
  4. Abstract

    Shrub encroachment is transforming arid and semiarid grasslands worldwide. Such transitions should influence predator–prey interactions because vegetation cover often affects risk perception by prey and contributes to their landscape of fear. We examined how the landscape of fear of two desert lagomorphs (black‐tailed jackrabbit,Lepus californicus; desert cottontail,Sylvilagus audubonii) changes across grassland‐to‐shrubland gradients at Jornada Basin Long Term Ecological Research site in the Chihuahuan Desert of southern New Mexico. We test whether shrub encroachment shapes risk differently for these two lagomorphs because of differences in body size and predator escape tactics. We also examine whether an ecosystem engineer of grasslands (banner‐tailed kangaroo rat,Dipodomys spectabilis) mediates risk perception through the creation of escape refuge and whether trade‐offs exist between shrub encroachment and the local reduction of banner‐tailed kangaroo rats caused by shrub expansion. We measured perceived predation risk with flight initiation distances (FIDs) and then used structural equation modeling to tease apart the hypothesized direct and indirect pathways for how shrub encroachment could affect perceived risk. A total negative effect of shrub cover on FID was supported for jackrabbits and cottontails, suggesting both species perceive shrubbier habitat as safer. Increases in fine‐scale concealment also reduced risk for cottontails, but not jackrabbits, likely because cottontails rely on crypsis to avoid predator detection whereas jackrabbits rely on speed and agility to outrun predators. Perceived risk was reduced when individuals were near kangaroo rat mounds only for cottontails because the smaller species can use banner‐tailed kangaroo rat mounds as refuge. Shrub encroachment greatly reduced the availability of mounds. Thus, a trade‐off exists for cottontails in which shrub encroachment directly reduced perceived risk, but indirectly increased perceived risk through the local extirpation of an ecosystem engineer. Our work illustrates how the expansion of shrub encroachment can create a dynamic landscape of fear for populations of prey species involving direct and indirect pathways contingent on prey body size, escape tactics, and activities of an ecosystem engineer.

     
    more » « less
  5. Cannibalism, or intraspecific predation, is the act of an organism consuming another organism of the same species. In predator-prey relationships, there is experimental evidence to support the existence of cannibalism among juvenile prey. In this work, we propose a stage-structured predator-prey system where cannibalism occurs only in the juvenile prey population. We show that cannibalism has both a stabilizing and destabilizing effect depending on the choice of parameters. We perform stability analysis of the system and also show that the system experiences a supercritical Hopf, saddle-node, Bogdanov-Takens and cusp bifurcation. We perform numerical experiments to further support our theoretical findings. We discuss the ecological implications of our results.

     
    more » « less