skip to main content

Title: Bedrock river erosion through dipping layered rocks: quantifying erodibility through kinematic wave speed
Abstract. Landscape morphology reflects drivers such as tectonicsand climate but is also modulated by underlying rock properties. Whilegeomorphologists may attempt to quantify the influence of rock strengththrough direct comparisons of landscape morphology and rock strengthmetrics, recent work has shown that the contact migration resulting from the presence of mixed lithologies may hinder such an approach. Indeed, this work counterintuitively suggests that channel slopes within weaker units can sometimes be higher than channel slopes within stronger units. Here, we expand upon previous work with 1-D stream power numerical models in which we have created a system for quantifying contact migration over time. Although previous studies have developed theories for bedrock rivers incising through layered stratigraphy, we can now scrutinize these theories with contact migration rates measured in our models. Our results show that previously developed theory is generally robust and that contact migration rates reflect the pattern of kinematic wave speed across the profile. Furthermore, we have developed and tested a new approach for estimating kinematic wave speeds. This approach utilizes channel steepness, a known base-level fall rate, and contact dips. Importantly, we demonstrate how this new approach can be combined with previous work to estimate erodibility values. We demonstrate this more » approach by accurately estimating the erodibility values used in our numerical models. After this demonstration, we use our approach to estimate erodibility values for a stream near Hanksville, UT. Because we show in our numerical models that one can estimate the erodibility of the unit with lower steepness, the erodibilities we estimate for this stream in Utah are likely representative of mudstone and/or siltstone. The methods we have developed can be applied to streams with temporally constant base-level fall, opening new avenues of research within the field of geomorphology. « less
Authors:
;
Award ID(s):
1727139
Publication Date:
NSF-PAR ID:
10311497
Journal Name:
Earth Surface Dynamics
Volume:
9
Issue:
4
ISSN:
2196-632X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tectonic deformation can influence spatiotemporal patterns of erosion by changing both base level and the mechanical state of bedrock. Although base-level change and the resulting erosion are well understood, the impact of tectonic damage on bedrock erodibility has rarely been quantified. Eastern Tibet, a tectonically active region with diverse lithologies and multiple active fault zones, provides a suitable field site to understand how tectonic deformation controls erosion and topography. In this study, we quantified erosion coefficients using the relationship between millennial erosion rates and the corresponding channel steepness. Our work shows a twofold increase in erosion coefficients between basins within 15 km of major faults compared to those beyond 15 km, suggesting that tectonic deformation through seismic shaking and rock damage significantly affects eastern Tibet erosion and topography. This work demonstrates a field-based, quantitative relationship between rock erodibility and fault damage, which has important implications for improving landscape evolution models.
  2. Abstract In most landscape evolution models, extreme rainfall enhances river incision. In steep landscapes, however, these events trigger landslides that can buffer incision via increased sediment delivery and aggradation. We quantify landslide sediment aggradation and erosional buffering with a natural experiment in southern Taiwan where a northward gradient in tectonic activity drives increasing landscape steepness. We find that landscape response to extreme rainfall during the 2009 typhoon Morakot varied along this gradient, where steep areas experienced widespread channel sediment aggradation of >10 m and less steep areas did not noticeably aggrade. We model sediment export to estimate a sediment removal timeline and find that steep, tectonically active areas with the most aggradation may take centuries to resume bedrock incision. Expected sediment cover duration reflects tectonic uplift. We find that despite high stream power, sediment cover may keep steep channels from eroding bedrock for up to half of a given time period. This work highlights the importance of dynamic sediment cover in landscape evolution and suggests a mechanism by which erosional efficiency in tectonically active landscapes may decrease as landscape steepness increases.
  3. Abstract River channels are among the most common landscape features on Earth. An essential characteristic of channels is sinuosity: their tendency to take a circuitous path, which is quantified as along-stream length divided by straight-line length. River sinuosity is interpreted as a characteristic that either forms randomly at channel inception or develops over time as meander bends migrate. Studies tend to assume the latter and thus have used river sinuosity as a proxy for both modern and ancient environmental factors including climate, tectonics, vegetation, and geologic structure. But no quantitative criterion for planform expression has distinguished between random, initial sinuosity and that developed by ordered growth through channel migration. This ambiguity calls into question the utility of river sinuosity for understanding Earth's history. We propose a quantitative framework to reconcile these competing explanations for river sinuosity. Using a coupled analysis of modeled and natural channels, we show that while a majority of observed sinuosity is consistent with randomness and limited channel migration, rivers with sinuosity ≥1.5 likely formed their geometry through sustained, ordered growth due to channel migration. This criterion frames a null hypothesis for river sinuosity that can be applied to evaluate the significance of environmental interpretations in landscapesmore »shaped by rivers. The quantitative link between sinuosity and channel migration further informs strategies for preservation and restoration of riparian habitat and guides predictions of fluvial deposits in the rock record and in remotely sensed environments from the seafloor to planetary surfaces.« less
  4. Abstract. We use 25 new measurements of in situ produced cosmogenic 26Al and 10Bein river sand, paired with estimates of dissolved load flux in river water,to characterize the processes and pace of landscape change in central Cuba.Long-term erosion rates inferred from 10Be concentrations in quartzextracted from central Cuban river sand range from3.4–189 Mg km−2 yr−1 (mean 59, median 45). Dissolved loads (10–176 Mg km−2 yr−1; mean 92, median 97), calculated from stream soluteconcentrations and modeled runoff, exceed measured cosmogenic-10Be-derived erosion rates in 18 of 23 basins. This disparity mandatesthat in this environment landscape-scale mass loss is not fully representedby the cosmogenic nuclide measurements. The 26Al / 10Be ratios are lower than expected for steady-state exposure or erosion in 16 of 24 samples. Depressed 26Al / 10Be ratios occur in many of the basins that have the greatest disparity between dissolved loads (high) and erosion rates inferred from cosmogenic nuclide concentrations (low). Depressed 26Al / 10Be ratios are consistentwith the presence of a deep, mixed, regolith layer providing extendedstorage times on slopes and/or burial and extended storage during fluvialtransport. River water chemical analyses indicate that many basins with lower 26Al / 10Be ratios and high 10Be concentrations are underlain at least in part by evaporitic rocks that rapidly dissolve. Our data show that when assessingmore »mass loss in humid tropical landscapes,accounting for the contribution of rock dissolution at depth is particularly important. In such warm, wet climates, mineral dissolution can occur many meters below the surface, beyond the penetration depth of most cosmic rays and thus the production of most cosmogenic nuclides. Our data suggest the importance of estimating solute fluxes and measuring paired cosmogenic nuclides to better understand the processes and rates of mass transfer at a basin scale.« less
  5. We investigate wind wave growth by direct numerical simulations solving for the two-phase Navier–Stokes equations. We consider the ratio of the wave speed $c$ to the wind friction velocity $u_*$ from $c/u_*= 2$ to 8, i.e. in the slow to intermediate wave regime; and initial wave steepness $ak$ from 0.1 to 0.3; the two being varied independently. The turbulent wind and the travelling, nearly monochromatic waves are fully coupled without any subgrid-scale models. The wall friction Reynolds number is 720. The novel fully coupled approach captures the simultaneous evolution of the wave amplitude and shape, together with the underwater boundary layer (drift current), up to wave breaking. The wave energy growth computed from the time-dependent surface elevation is in quantitative agreement with that computed from the surface pressure distribution, which confirms the leading role of the pressure forcing for finite amplitude gravity waves. The phase shift and the amplitude of the principal mode of surface pressure distribution are systematically reported, to provide direct evidence for possible wind wave growth theories. Intermittent and localised airflow separation is observed for steep waves with small wave age, but its effect on setting the phase-averaged pressure distribution is not drastically different from that ofmore »non-separated sheltering. We find that the wave form drag force is not a strong function of wave age but closely related to wave steepness. In addition, the history of wind wave coupling can affect the wave form drag, due to the wave crest shape and other complex coupling effects. The normalised wave growth rate we obtain agrees with previous studies. We make an effort to clarify various commonly adopted underlying assumptions, and to reconcile the scattering of the data between different previous theoretical, numerical and experimental results, as we revisit this longstanding problem with new numerical evidence.« less