skip to main content


Title: A geometric criterion for the optimal spreading of active polymers in porous media
Abstract Efficient navigation through disordered, porous environments poses a major challenge for swimming microorganisms and future synthetic cargo-carriers. We perform Brownian dynamics simulations of active stiff polymers undergoing run-reverse dynamics, and so mimic bacterial swimming, in porous media. In accord with experiments of Escherichia coli , the polymer dynamics are characterized by trapping phases interrupted by directed hopping motion through the pores. Our findings show that the spreading of active agents in porous media can be optimized by tuning their run lengths, which we rationalize using a coarse-grained model. More significantly, we discover a geometric criterion for the optimal spreading, which emerges when their run lengths are comparable to the longest straight path available in the porous medium. Our criterion unifies results for porous media with disparate pore sizes and shapes and for run-and-tumble polymers. It thus provides a fundamental principle for optimal transport of active agents in densely-packed biological and environmental settings.  more » « less
Award ID(s):
1941716 2011750 1853602
NSF-PAR ID:
10311981
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The natural habitats of planktonic and swimming microorganisms, from algae in the oceans to bacteria living in soil or intestines, are characterized by highly heterogeneous fluid flows. The complex interplay of flow-field topology, self-propulsion, and porous microstructure is essential to a wide range of biophysical and ecological processes, including marine oxygen production, remineralization of organic matter, and biofilm formation. Although much progress has been made in the understanding of microbial hydrodynamics and surface interactions over the last decade, the dispersion of active suspensions in complex flow environments still poses unsolved fundamental questions that preclude predictive models for microbial transport and spreading under realistic conditions. Here, we combine experiments and simulations to identify the key physical mechanisms and scaling laws governing the dispersal of swimming bacteria in idealized porous media flows. By tracing the scattering dynamics of swimming bacteria in microfluidic crystal lattices, we show that hydrodynamic gradients hinder transverse bacterial dispersion, thereby enhancing stream-wise dispersion ∼ 100 -fold beyond canonical Taylor–Aris dispersion of passive Brownian particles. Our analysis further reveals that hydrodynamic cell reorientation and Lagrangian flow structure induce filamentous density patterns that depend upon the incident angle of the flow and disorder of the medium, in striking analogy to classical light-scattering experiments. 
    more » « less
  2. Locomotion is typically studied either in continuous media where bodies and legs experience forces generated by the flowing medium or on solid substrates dominated by friction. In the former, centralized whole-body coordination is believed to facilitate appropriate slipping through the medium for propulsion. In the latter, slip is often assumed minimal and thus avoided via decentralized control schemes. We find in laboratory experiments that terrestrial locomotion of a meter-scale multisegmented/legged robophysical model resembles undulatory fluid swimming. Experiments varying waves of leg stepping and body bending reveal how these parameters result in effective terrestrial locomotion despite seemingly ineffective isotropic frictional contacts. Dissipation dominates over inertial effects in this macroscopic-scaled regime, resulting in essentially geometric locomotion on land akin to microscopic-scale swimming in fluids. Theoretical analysis demonstrates that the high-dimensional multisegmented/legged dynamics can be simplified to a centralized low-dimensional model, which reveals an effective resistive force theory with an acquired viscous drag anisotropy. We extend our low-dimensional, geometric analysis to illustrate how body undulation can aid performance in non–flat obstacle-rich terrains and also use the scheme to quantitatively model how body undulation affects performance of biological centipede locomotion (the desert centipede Scolopendra polymorpha ) moving at relatively high speeds (∼0.5 body lengths/sec). Our results could facilitate control of multilegged robots in complex terradynamic scenarios. 
    more » « less
  3. Recent studies in polymer physics have created macro-scale analogs to solute microscopic polymer chains like DNA by inducing diffusive motion on a chain of beads. These bead chains have persistence lengths of O(10) links and undergo diffusive motion under random fluctuations like vibration. We present a bead chain model within a new stochastic forcing system: an air fluidizing bed of granular media. A chain of spherical 6 mm resin beads crimped onto silk thread are buffeted randomly by the multiphase flow of grains and low density rising air “bubbles”. We “thermalize” bead chains of various lengths at different fluidizing airflow rates, while X-ray imaging captures a projection of the chains’ dynamics within the media. With modern 3D printing techniques, we can better represent complex polymers by geometrically varying bead connections and their relative strength, e.g., mimicking the variable stiffness between adjacent nucleotide pairs of DNA. We also develop Discrete Element Method (DEM) simulations to study the 3D motion of the bead chain, where the bead chain is represented by simulated spherical particles connected by linear and angular spring-like bonds. In experiment, we find that the velocity distributions of the beads follow exponential distributions rather than the Gaussian distributions expected from polymers in solution. Through use of the DEM simulation, we find that this difference can likely be attributed to the distributions of the forces imparted onto the chain from the fluidized bed environment. We anticipate expanding this study in the future to explore a wide range of chain composition and confinement geometry, which will provide insights into the physics of large biopolymers. 
    more » « less
  4. Complex and active fluids find broad applications in flows through porous materials. Nontrivial rheology can couple to porous microstructure leading to surprising flow patterns and associated transport properties in geophysical, biological, and industrial systems. Viscoelastic instabilities are highly sensitive to pore geometry and can give rise to chaotic velocity fluctuations. A number of recent studies have begun to untangle how the pore-scale geometry influences the sample-scale flow topology and the resulting dispersive transport properties of these complex systems. Beyond classical rheological properties, active colloids and swimming cells exhibit a range of unique properties, including reduced effective viscosity, collective motion, and random walks, that present novel challenges to understanding their mechanics and transport in porous media flows. This review article aims to provide a brief overview of essential, fundamental concepts followed by an in-depth summary of recent developments in this rapidly evolving field. The chosen topics are motivated by applications, and new opportunities for discovery are highlighted.

     
    more » « less
  5. Abstract

    Recent multi‐channel seismic studies of fast spreading and hot‐spot influenced mid‐ocean ridges reveal magma bodies located beneath the mid‐crustal Axial Magma Lens (AML), embedded within the underlying crustal mush zone. We here present new seismic images from the Juan de Fuca Ridge that show reflections interpreted to be from vertically stacked magma lenses in a number of locations beneath this intermediate‐spreading ridge. The brightest reflections are beneath Northern Symmetric segment, from ∼46°42′‐52′N and Split Seamount, where a small magma body at local Moho depths is also detected, inferred to be a source reservoir for the stacked magma lenses in the crust above. The imaged magma bodies are sub‐horizontal, extend continuously for along‐axis lengths of ∼1–8 km, with the shallowest located at depths of ∼100–1,200 m below the AML, and are similar to sub‐AML bodies found at the East Pacific Rise. At both ridges, stacked sill‐like lenses are detected beneath only a small fraction of the ridge length examined and are inferred to mark local sites of higher melt flux and active replenishment from depth. The imaged magma lenses are focused in the upper part of the lower crust, which coincides with the most melt rich part of the crystal mush zone detected in other geophysical studies and where sub‐vertical fabrics are observed in geologic exposures of oceanic crust. We infer that the multi‐level magma accumulations are ephemeral and may result from porous flow and mush compaction, and that they can be tapped and drained during dike intrusion and eruption events.

     
    more » « less