skip to main content

Title: Finding High-redshift Galaxies with JWST
Abstract One of the primary goals for the upcoming James Webb Space Telescope is to observe the first galaxies. Predictions for planned and proposed surveys have typically focused on average galaxy counts, assuming a random distribution of galaxies across the observed field. The first and most-massive galaxies, however, are expected to be tightly clustered, an effect known as cosmic variance. We show that cosmic variance is likely to be the dominant contribution to uncertainty for high-redshift mass and luminosity functions, and that median high-redshift and high-mass galaxy counts for planned observations lie significantly below average counts. Several different strategies are considered for improving our understanding of the first galaxies, including adding depth, area, and independent pointings. Adding independent pointings is shown to be the most efficient both for discovering the single highest-redshift galaxy and also for constraining mass and luminosity functions.
Authors:
; ;
Award ID(s):
1827079 2005578
Publication Date:
NSF-PAR ID:
10312310
Journal Name:
The Astrophysical Journal
Volume:
923
Issue:
1
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Cosmic variance is the intrinsic scatter in the number density of galaxies due to fluctuations in the large-scale dark matter density field. In this work, we present a simple analytic model of cosmic variance in the high-redshift Universe (z ∼ 5–15). We assume that galaxies grow according to the evolution of the halo mass function, which we allow to vary with large-scale environment. Our model produces a reasonable match to the observed ultraviolet (UV) luminosity functions in this era by regulating star formation through stellar feedback and assuming that the UV luminosity function is dominated by recent star formation. We find that cosmic variance in the UV luminosity function is dominated by the variance in the underlying dark matter halo population, and not by differences in halo accretion or the specifics of our stellar feedback model. We also find that cosmic variance dominates over Poisson noise for future high-z surveys except for the brightest sources or at very high redshifts (z ≳ 12). We provide a linear approximation of cosmic variance for a variety of redshifts, magnitudes, and survey areas through the public python package galcv. Finally, we introduce a new method for incorporating priors on cosmic variance intomore »estimates of the galaxy luminosity function and demonstrate that it significantly improves constraints on that important observable.« less
  2. ABSTRACT

    We post-process galaxies in the IllustrisTNG simulations with skirt radiative transfer calculations to make predictions for the rest-frame near-infrared (NIR) and far-infrared (FIR) properties of galaxies at z ≥ 4. The rest-frame K- and z-band galaxy luminosity functions from TNG are overall consistent with observations, despite ${\sim}0.5\, \mathrm{dex}$ underprediction at z = 4 for MK ≲ −25 and Mz ≲ −24. Predictions for the JWST MIRI observed galaxy luminosity functions and number counts are given. Based on theoretical estimations, we show that the next-generation survey conducted by JWST can detect 500 (30) galaxies in F1000W in a survey area of $500\, {\rm arcmin}^{2}$ at z = 6 (z = 8). As opposed to the consistency in the UV, optical, and NIR, we find that TNG, combined with our dust modelling choices, significantly underpredicts the abundance of most dust-obscured and thus most luminous FIR galaxies. As a result, the obscured cosmic star formation rate density (SFRD) and the SFRD contributed by optical/NIR dark objects are underpredicted. The discrepancies discovered here could provide new constraints on the sub-grid feedback models, or the dust contents, of simulations. Meanwhile, although the TNG predicted dust temperature and its relations with IR luminosity and redshiftmore »are qualitatively consistent with observations, the peak dust temperature of z ≥ 6 galaxies are overestimated by about $20\, {\rm K}$. This could be related to the limited mass resolution of our simulations to fully resolve the porosity of the interstellar medium (or specifically its dust content) at these redshifts.

    « less
  3. We present the first [C II] 158 μ m luminosity function (LF) at z  ∼ 5 from a sample of serendipitous lines detected in the ALMA Large Program to INvestigate [C II] at Early times (ALPINE). A study of the 118 ALPINE pointings revealed several serendipitous lines. Based on their fidelity, we selected 14 lines for the final catalog. According to the redshift of their counterparts, we identified eight out of 14 detections as [C II] lines at z  ∼ 5, along with two as CO transitions at lower redshifts. The remaining four lines have an elusive identification in the available catalogs and we considered them as [C II] candidates. We used the eight confirmed [C II] and the four [C II] candidates to build one of the first [C II] LFs at z  ∼ 5. We found that 11 out of these 12 sources have a redshift very similar to that of the ALPINE target in the same pointing, suggesting the presence of overdensities around the targets. Therefore, we split the sample in two (a “clustered” and “field” subsample) according to their redshift separation and built two separate LFs. Our estimates suggest that there could be an evolution of the [C II]more »LF between z  ∼ 5 and z  ∼ 0. By converting the [C II] luminosity to the star-formation rate, we evaluated the cosmic star-formation rate density (SFRD) at z  ∼ 5. The clustered sample results in a SFRD ∼10 times higher than previous measurements from UV–selected galaxies. On the other hand, from the field sample (likely representing the average galaxy population), we derived a SFRD ∼1.6 higher compared to current estimates from UV surveys but compatible within the errors. Because of the large uncertainties, observations of larger samples will be necessary to better constrain the SFRD at z  ∼ 5. This study represents one of the first efforts aimed at characterizing the demography of [C II] emitters at z  ∼ 5 using a mm selection of galaxies.« less
  4. Abstract

    Applying halo models to analyze the small-scale clustering of galaxies is a proven method for characterizing the connection between galaxies and their host halos. Such works are often plagued by systematic errors or limited to clustering statistics that can be predicted analytically. In this work, we employ a numerical mock-based modeling procedure to examine the clustering of Sloan Digital Sky Survey DR7 galaxies. We apply a standard halo occupation distribution (HOD) model to dark matter only simulations with a ΛCDM cosmology. To constrain the theoreStical models, we utilize a combination of galaxy number density and selected scales of the projected correlation function, redshift-space correlation function, group multiplicity function, average group velocity dispersion, mark correlation function, and counts-in-cells statistics. We design an algorithm to choose an optimal combination of measurements that yields tight and accurate constraints on our model parameters. Compared to previous work using fewer clustering statistics, we find a significant improvement in the constraints on all parameters of our halo model for two different luminosity-threshold galaxy samples. Most interestingly, we obtain unprecedented high-precision constraints on the scatter in the relationship between galaxy luminosity and halo mass. However, our best-fit model results in significant tension (>4σ) for both samples,more »indicating the need to add second-order features to the standard HOD model. To guarantee the robustness of these results, we perform an extensive analysis of the systematic and statistical errors in our modeling procedure, including a first of its kind study of the sensitivity of our constraints to changes in the halo mass function due to baryonic physics.

    « less
  5. ABSTRACT The James Webb Space Telescope (JWST) is expected to observe galaxies at z > 10 that are presently inaccessible. Here, we use a self-consistent empirical model, the universemachine, to generate mock galaxy catalogues and light-cones over the redshift range z = 0−15. These data include realistic galaxy properties (stellar masses, star formation rates, and UV luminosities), galaxy–halo relationships, and galaxy–galaxy clustering. Mock observables are also provided for different model parameters spanning observational uncertainties at z < 10. We predict that Cycle 1 JWST surveys will very likely detect galaxies with M* > 107 M⊙ and/or M1500 < −17 out to at least z ∼ 13.5. Number density uncertainties at z > 12 expand dramatically, so efforts to detect z > 12 galaxies will provide the most valuable constraints on galaxy formation models. The faint-end slopes of the stellar mass/luminosity functions at a given mass/luminosity threshold steepen as redshift increases. This is because observable galaxies are hosted by haloes in the exponentially falling regime of the halo mass function at high redshifts. Hence, these faint-end slopes are robustly predicted to become shallower below current observable limits (M* < 107 M⊙ or M1500 > −17). For reionization models, extrapolating luminosity functions with amore »constant faint-end slope from M1500 = −17 down to M1500 = −12 gives the most reasonable upper limit for the total UV luminosity and cosmic star formation rate up to z ∼ 12. We compare to three other empirical models and one semi-analytic model, showing that the range of predicted observables from our approach encompasses predictions from other techniques. Public catalogues and light-cones for common fields are available online.« less