ABSTRACT We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete.
more »
« less
Finding High-redshift Galaxies with JWST
Abstract One of the primary goals for the upcoming James Webb Space Telescope is to observe the first galaxies. Predictions for planned and proposed surveys have typically focused on average galaxy counts, assuming a random distribution of galaxies across the observed field. The first and most-massive galaxies, however, are expected to be tightly clustered, an effect known as cosmic variance. We show that cosmic variance is likely to be the dominant contribution to uncertainty for high-redshift mass and luminosity functions, and that median high-redshift and high-mass galaxy counts for planned observations lie significantly below average counts. Several different strategies are considered for improving our understanding of the first galaxies, including adding depth, area, and independent pointings. Adding independent pointings is shown to be the most efficient both for discovering the single highest-redshift galaxy and also for constraining mass and luminosity functions.
more »
« less
- PAR ID:
- 10312310
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 923
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT Cosmic variance is the intrinsic scatter in the number density of galaxies due to fluctuations in the large-scale dark matter density field. In this work, we present a simple analytic model of cosmic variance in the high-redshift Universe (z ∼ 5–15). We assume that galaxies grow according to the evolution of the halo mass function, which we allow to vary with large-scale environment. Our model produces a reasonable match to the observed ultraviolet (UV) luminosity functions in this era by regulating star formation through stellar feedback and assuming that the UV luminosity function is dominated by recent star formation. We find that cosmic variance in the UV luminosity function is dominated by the variance in the underlying dark matter halo population, and not by differences in halo accretion or the specifics of our stellar feedback model. We also find that cosmic variance dominates over Poisson noise for future high-z surveys except for the brightest sources or at very high redshifts (z ≳ 12). We provide a linear approximation of cosmic variance for a variety of redshifts, magnitudes, and survey areas through the public python package galcv. Finally, we introduce a new method for incorporating priors on cosmic variance into estimates of the galaxy luminosity function and demonstrate that it significantly improves constraints on that important observable.more » « less
-
null (Ed.)ABSTRACT The James Webb Space Telescope (JWST) is expected to observe galaxies at z > 10 that are presently inaccessible. Here, we use a self-consistent empirical model, the universemachine, to generate mock galaxy catalogues and light-cones over the redshift range z = 0−15. These data include realistic galaxy properties (stellar masses, star formation rates, and UV luminosities), galaxy–halo relationships, and galaxy–galaxy clustering. Mock observables are also provided for different model parameters spanning observational uncertainties at z < 10. We predict that Cycle 1 JWST surveys will very likely detect galaxies with M* > 107 M⊙ and/or M1500 < −17 out to at least z ∼ 13.5. Number density uncertainties at z > 12 expand dramatically, so efforts to detect z > 12 galaxies will provide the most valuable constraints on galaxy formation models. The faint-end slopes of the stellar mass/luminosity functions at a given mass/luminosity threshold steepen as redshift increases. This is because observable galaxies are hosted by haloes in the exponentially falling regime of the halo mass function at high redshifts. Hence, these faint-end slopes are robustly predicted to become shallower below current observable limits (M* < 107 M⊙ or M1500 > −17). For reionization models, extrapolating luminosity functions with a constant faint-end slope from M1500 = −17 down to M1500 = −12 gives the most reasonable upper limit for the total UV luminosity and cosmic star formation rate up to z ∼ 12. We compare to three other empirical models and one semi-analytic model, showing that the range of predicted observables from our approach encompasses predictions from other techniques. Public catalogues and light-cones for common fields are available online.more » « less
-
ABSTRACT We post-process galaxies in the IllustrisTNG simulations with skirt radiative transfer calculations to make predictions for the rest-frame near-infrared (NIR) and far-infrared (FIR) properties of galaxies at z ≥ 4. The rest-frame K- and z-band galaxy luminosity functions from TNG are overall consistent with observations, despite $${\sim}0.5\, \mathrm{dex}$$ underprediction at z = 4 for MK ≲ −25 and Mz ≲ −24. Predictions for the JWST MIRI observed galaxy luminosity functions and number counts are given. Based on theoretical estimations, we show that the next-generation survey conducted by JWST can detect 500 (30) galaxies in F1000W in a survey area of $$500\, {\rm arcmin}^{2}$$ at z = 6 (z = 8). As opposed to the consistency in the UV, optical, and NIR, we find that TNG, combined with our dust modelling choices, significantly underpredicts the abundance of most dust-obscured and thus most luminous FIR galaxies. As a result, the obscured cosmic star formation rate density (SFRD) and the SFRD contributed by optical/NIR dark objects are underpredicted. The discrepancies discovered here could provide new constraints on the sub-grid feedback models, or the dust contents, of simulations. Meanwhile, although the TNG predicted dust temperature and its relations with IR luminosity and redshift are qualitatively consistent with observations, the peak dust temperature of z ≥ 6 galaxies are overestimated by about $$20\, {\rm K}$$. This could be related to the limited mass resolution of our simulations to fully resolve the porosity of the interstellar medium (or specifically its dust content) at these redshifts.more » « less
-
Abstract Bursty star formation—a key prediction for high-redshift galaxies from cosmological simulations explicitly resolving stellar feedback in the interstellar medium—has recently been observed to prevail among galaxies at redshiftz≳ 6. Line intensity mapping (LIM) of the 158μm [Cii] line as a star formation rate (SFR) indicator offers unique opportunities to tomographically constrain cosmic star formation at high redshift, in a way complementary to observations of individually detected galaxies. To understand the effects of bursty star formation on [Cii] LIM, which have remained unexplored in previous studies, we present an analytic modeling framework for high-zgalaxy formation and [Cii] LIM signals that accounts for bursty star formation histories induced by delayed supernova feedback. We use it to explore and characterize how bursty star formation can impact and thus complicate the interpretation of the [Cii] luminosity function and power spectrum. Our simple analytic model indicates that bursty star formation mainly affects low-mass galaxies by boosting their average SFR and [Cii] luminosity, and in the [Cii] power spectrum it can create a substantial excess in the large-scale clustering term. This distortion results in a power spectrum shape that cannot be explained by invoking a mass-independent logarithmic scatter. We conclude that burstiness must be accounted for when modeling and analyzing [Cii] data sets from the early Universe, and that in the extreme, the signature of burstiness may be detectable with first-generation experiments such as TIME, CONCERTO, and CCAT-DSS.more » « less
An official website of the United States government

