skip to main content


Title: A remotely controlled Marangoni surfer
Abstract Inspired by creatures that have naturally mastered locomotion on the air–water interface, we developed and built a self-powered, remotely controlled surfing robot capable of traversing this boundary by harnessing surface tension modification for both propulsion and steering through a controlled release of isopropyl alcohol. In this process, we devised and implemented novel release valve and steering mechanisms culminating in a surfer with distinct capabilities. Our robot measures about 110 mm in length and can travel as fast as 0.8 body length per second. Interestingly, we found that the linear speed of the robot follows a 1/3 power law with the release rate of the propellant. Additional maneuverability tests also revealed that the robot is able to withstand 20 mm s −2 in centripetal acceleration while turning. Here, we thoroughly discuss the design, development, performance, overall capabilities, and ultimate limitations of our robotic surfer.  more » « less
Award ID(s):
1749634
NSF-PAR ID:
10312321
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Bioinspiration & Biomimetics
Volume:
16
Issue:
6
ISSN:
1748-3182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. From insects to arachnids to bacteria, the surfaces of lakes and ponds are teaming with life. Many modes of locomotion are employed by these organisms to navigate along the air–water interface, including the use of lipid-laden excretions that can locally change the surface tension of the water and induce a Marangoni flow. In this paper, we improved the speed and maneuverability of a miniature remote-controlled robot that mimics insect locomotion using an onboard tank of isopropyl alcohol and a series of servomotors to control both the rate and location of alcohol release to both propel and steer the robot across the water. Here, we studied the effect of a series of design changes to the foam rubber footpads, which float the robot and are integral in efficiently converting the alcohol-induced surface tension gradients into propulsive forces and effective maneuvering. Two designs were studied: a two-footpad design and a single-footpad design. In the case of two footpads, the gap between the two footpads was varied to investigate its impact on straight-line speed, propulsion efficiency, and maneuverability. An optimal design was found with a small but finite gap between the two pads of 7.5 mm. In the second design, a single footpad without a central gap was studied. This footpad had a rectangular cut-out in the rear to capture the alcohol. Footpads with wider and shallower cut-outs were found to optimize efficiency. This observation was reinforced by the predictions of a simple theoretical mechanical model. Overall, the optimized single-footpad robot outperformed the two-footpad robot, producing a 30% improvement in speed and a 400% improvement in maneuverability.

     
    more » « less
  2. null (Ed.)
    Continuum robots have high degrees of freedom and the ability to safely move in constrained environments. One class of soft continuum robot is the “vine” robot. This type of robot extends from its tip by everting or unfurling new material, driven by internal body pressure. Most vine robot examples store new body material in a reel at their base, passing it through the core of the robot to the tip, and like many continuum robots, steer by selectively lengthening or shortening one side of the body. While this approach to steering and material storage lends itself to a fully soft device, it has three key limitations: (i) internal friction of material passing through the core of the robot limits its length in tortuous paths, (ii) body buckling as the robot's body material is re-spooled at the base can prevent retraction, and (iii) constant curvature steering limits the robot's poses and object approach angles in a given workspace. This letter presents a hybrid soft-rigid robotic system comprising a soft vine robot body and a rigid, mobile, internal steering-reeling mechanism (SRM); this SRM is equipped with a reel for material storage, a bending actuator for steering, and is capable of actuating the robot at any point along its length. This hybrid configuration increases reach along tortuous paths, allows retraction, and increases the workspace. We describe the motivation for the device, generate its mathematical models, present its methods of operation, and verify experimentally the models we developed and the performance improvements over previous vine robots. 
    more » « less
  3. Muscle weakness and loss of independent joint control are the 2 most common neuromotor impairments after stroke. While there are a number of approaches to improve poststroke muscle weakness, there are currently no rehabilitation strategies that directly target a patient’s inability to match and independently activate the normal patterned muscle coordination strategies, or “muscle synergies.” Our goal is to develop an EMG-based controller for retraining healthy muscle synergies in patients with stroke-related disabilities. The controller can be integrated into rehabilitation robots for their ability to structure the robot’s force output based on input EMG activity. However, developing such a controller would require a clear understanding of the relationship between the applied force from a rehabilitation robot and the resulting changes to a patient’s muscle synergies. Therefore, this study was performed to quantify how the muscle synergies of horizontal planar-reaching are affected by direction of an applied force at the end-effector (ie, hand). A 2 DOF, 10 muscle model was developed in MATLAB using parameters obtained from the OpenSim (version 3.3) open source software system. Simulation experiments were then performed in MATLAB to investigate the relationship between the applied force and the resulting muscle synergies. The simulated event was composed of several trials of the same righthanded, planar, multidirectional reaching task from 0° (to the right) to 360°. Each trial applied a different steering force direction at the subject’s hand, varying from −45° to 45° relative to the reaching direction. The simulation trials were also validated by evaluating the EMG patterns of a healthy subject when performing the same reaching task with varying steering force directions. For the 0° steering force trials, the muscle synergies and their activation timings were extracted using nonnegative matrix factorization (NMF). For all other trials, the synergy matrix was fixed and the activation timings were extracted from the product of the EMG of that trial and the pseudo-inverse of the synergy matrix from the 0° steering force trial. By fixing the synergy matrix in the trials with steering forces, we can directly track activation changes of a certain synergy as steering force is varied. For both simulation and experimental trials, circular statistics revealed a linear relationship between changes in steering force direction and principal direction of synergy activation. These results suggest that the activation of a synergy can be controlled directly by the direction of an applied steering force. This has relevant implications in synergy-based controller design because a computer can easily manipulate a patient’s muscle synergies and track the changes while avoiding the computational expense of NMF. In addition, similar analysis could be used to extract the relationship between applied forces and changes in synergies for other types of motion. 
    more » « less
  4. Millions of years of evolution have allowed animals to develop unusual locomotion capabilities. A striking example is the legless-jumping of click beetles and trap-jaw ants, which jump more than 10 times their body length. Their delicate musculoskeletal system amplifies their muscles’ power. It is challenging to engineer insect-scale jumpers that use onboard actuators for both elastic energy storage and power amplification. Typical jumpers require a combination of at least two actuator mechanisms for elastic energy storage and jump triggering, leading to complex designs having many parts. Here, we report the new concept of dynamic buckling cascading, in which a single unidirectional actuation stroke drives an elastic beam through a sequence of energy-storing buckling modes automatically followed by spontaneous impulsive snapping at a critical triggering threshold. Integrating this cascade in a robot enables jumping with unidirectional muscles and power amplification (JUMPA). These JUMPA systems use a single lightweight mechanism for energy storage and release with a mass of 1.6 g and 2 cm length and jump up to 0.9 m, 40 times their body length. They jump repeatedly by reengaging the latch and using coiled artificial muscles to restore elastic energy. The robots reach their performance limits guided by theoretical analysis of snap-through and momentum exchange during ground collision. These jumpers reach the energy densities typical of the best macroscale jumping robots, while also matching the rapid escape times of jumping insects, thus demonstrating the path toward future applications including proximity sensing, inspection, and search and rescue. 
    more » « less
  5. The Advanced Robotics and Automation (ARA) Lab has engineered its next-generation robot for steel bridge inspection. This particular design is specialized for its particularly high strength adhesion force and high maneuverability. The robot can utilize various steering configurations such as Ackermann, synchronous and static point steering while navigating steel structures and adhering to cylindrical members. The adhesion system creates a comprehensive platform for adding extra sensing equipment by the user and will serve as a basis for future works. This paper will discuss in detail the design work done to ensure that the proposed robot would function as intended before we made it and show how the capabilities we engineered the proposed robot have made it a step forward for the steel inspection industry. 
    more » « less