skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A remotely controlled Marangoni surfer
Abstract Inspired by creatures that have naturally mastered locomotion on the air–water interface, we developed and built a self-powered, remotely controlled surfing robot capable of traversing this boundary by harnessing surface tension modification for both propulsion and steering through a controlled release of isopropyl alcohol. In this process, we devised and implemented novel release valve and steering mechanisms culminating in a surfer with distinct capabilities. Our robot measures about 110 mm in length and can travel as fast as 0.8 body length per second. Interestingly, we found that the linear speed of the robot follows a 1/3 power law with the release rate of the propellant. Additional maneuverability tests also revealed that the robot is able to withstand 20 mm s −2 in centripetal acceleration while turning. Here, we thoroughly discuss the design, development, performance, overall capabilities, and ultimate limitations of our robotic surfer.  more » « less
Award ID(s):
1749634
PAR ID:
10312321
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Bioinspiration & Biomimetics
Volume:
16
Issue:
6
ISSN:
1748-3182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Continuum robots have high degrees of freedom and the ability to safely move in constrained environments. One class of soft continuum robot is the “vine” robot. This type of robot extends from its tip by everting or unfurling new material, driven by internal body pressure. Most vine robot examples store new body material in a reel at their base, passing it through the core of the robot to the tip, and like many continuum robots, steer by selectively lengthening or shortening one side of the body. While this approach to steering and material storage lends itself to a fully soft device, it has three key limitations: (i) internal friction of material passing through the core of the robot limits its length in tortuous paths, (ii) body buckling as the robot's body material is re-spooled at the base can prevent retraction, and (iii) constant curvature steering limits the robot's poses and object approach angles in a given workspace. This letter presents a hybrid soft-rigid robotic system comprising a soft vine robot body and a rigid, mobile, internal steering-reeling mechanism (SRM); this SRM is equipped with a reel for material storage, a bending actuator for steering, and is capable of actuating the robot at any point along its length. This hybrid configuration increases reach along tortuous paths, allows retraction, and increases the workspace. We describe the motivation for the device, generate its mathematical models, present its methods of operation, and verify experimentally the models we developed and the performance improvements over previous vine robots. 
    more » « less
  2. The Advanced Robotics and Automation (ARA) Lab has engineered its next-generation robot for steel bridge inspection. This particular design is specialized for its particularly high strength adhesion force and high maneuverability. The robot can utilize various steering configurations such as Ackermann, synchronous and static point steering while navigating steel structures and adhering to cylindrical members. The adhesion system creates a comprehensive platform for adding extra sensing equipment by the user and will serve as a basis for future works. This paper will discuss in detail the design work done to ensure that the proposed robot would function as intended before we made it and show how the capabilities we engineered the proposed robot have made it a step forward for the steel inspection industry. 
    more » « less
  3. This paper presents a reconfigurable intelligent surface (RIS) design and simulation aimed at enhancing beamforming and beam steering capabilities for 5G and 6G mobile communications. The proposed design introduces a 2- bit unit cell design, having four distinct phase states that can be tuned by a single varactor diode. This configuration has a 5x5 array and provides efficient operation at 23.8 GHz within the 5G New Radio (NR) frequency range 2 (FR2). The proposed RIS design demonstrates unique beam steering capabilities ranging from −60∘ to 60∘ in the azimuth plane which is crucial for extending coverage into the mm-wave coverage. The performance of the RIS is simulated using the CST 3D electromagnetic simulator, focusing on radar cross section (RCS) pattern for optimization. The simulation results reveal effective beam steering capabilities ranging from -10° to -60° and 10° to 60°, with a minimum scan loss of approximately 3 dB. The proposed RIS exhibits the high angular reciprocity that handles the incident waves up to 110∘ at an oblique 60∘ angle. 
    more » « less
  4. Tensegrity structures made from rigid rods and elastic cables have unique characteristics, such as being lightweight, easy to fabricate, and high load-carrying to weight capacity. In this article, we leverage tensegrity structures as wheels for a mobile robot that can actively change its shape by expanding or collapsing the wheels. Besides the shape-changing capability, using tensegrity as wheels offers several advantages over traditional wheels of similar sizes, such as a shock-absorbing capability without added mass since tensegrity wheels are both lightweight and highly compliant. We show that a robot with two icosahedron tensegrity wheels can reduce its width from 400 to 180 mm, and simultaneously, increase its height from 75 to 95 mm by changing the expanded tensegrity wheels to collapsed disk-like ones. The tensegrity wheels enable the robot to overcome steps with heights up to 110 and 150 mm with the expanded and collapsed configuration, respectively. We establish design guidelines for robots with tensegrity wheels by analyzing the maximum step height that can be overcome by the robot and the force required to collapse the wheel. The robot can also jump onto obstacles up to 300-mm high with a bistable mechanism that can gradually store but quickly release energy. We demonstrate the robot's locomotion capability in indoor and outdoor environments, including various natural terrains, like sand, grass, rocks, ice, and snow. Our results suggest that using tensegrity structures as wheels for mobile robots can enhance their capability to overcome obstacles, traverse challenging terrains, and survive falls from heights. When combined with other locomotion modes (e.g., jumping), such shape-changing robots can have broad applications for search-and-rescue after disasters or surveillance and monitoring in unstructured environments. 
    more » « less
  5. In this work we address the flexible physical docking-and-release as well as recharging needs for a marsupial system comprising an autonomous tiltrotor hybrid Micro Aerial Vehicle and a high-end legged locomotion robot. Within persistent monitoring and emergency response situations, such aerial / ground robot teams can offer rapid situational awareness by taking off from the mobile ground robot and scouting a wide area from the sky. For this type of operational profile to retain its long-term effectiveness, regrouping via landing and docking of the aerial robot onboard the ground one is a key requirement. Moreover, onboard recharging is a necessity in order to perform systematic missions. We present a framework comprising: a novel landing mechanism with recharging capabilities embedded into its design, an external battery-based recharging extension for our previously developed power-harvesting Micro Aerial Vehicle module, as well as a strategy for the reliable landing and the docking-and-release between the two robots. We specifically address the need for this system to be ferried by a quadruped ground system while remaining reliable during aggressive legged locomotion when traversing harsh terrain. We present conclusive experimental validation studies by deploying our solution on a marsupial system comprising the MiniHawk micro tiltrotor and the Boston Dynamics Spot legged robot. 
    more » « less