Magic‐angle spinning (MAS) NMR coupled with dynamic nuclear polarization (DNP) has the possibility to increase the sensitivity of MAS NMR by several orders of magnitude. While DNP enables many experiments that are sensitivity limited, such as those on dilute samples or those that measure long‐range distances, interpretation of DNP NMR spectra is often limited by broad lines and chemical shift degeneracy. Segmental isotopic labeling using split intein technology can provide an opportunity to overcome this issue. Isotopic labeling of only a segment of a protein that is otherwise unlabeled reduces the chemical shift degeneracy. In this article, we describe the current state of the art for producing segmentally isotopically labeled proteins using split inteins. We discuss some of the potential applications of segmental isotopic labeling, particularly those that exploit the increased experimental sensitivity of DNP‐enhanced MAS NMR spectroscopy
more »
« less
Sortase-mediated segmental labeling: A method for segmental assignment of intrinsically disordered regions in proteins
A significant number of proteins possess sizable intrinsically disordered regions (IDRs). Due to the dynamic nature of IDRs, NMR spectroscopy is often the tool of choice for characterizing these segments. However, the application of NMR to IDRs is often hindered by their instability, spectral overlap and resonance assignment difficulties. Notably, these challenges increase considerably with the size of the IDR. In response to these issues, here we report the use of sortase-mediated ligation (SML) for segmental isotopic labeling of IDR-containing samples. Specifically, we have developed a ligation strategy involving a key segment of the large IDR and adjacent folded headpiece domain comprising the C-terminus of A . thaliana villin 4 (AtVLN4). This procedure significantly reduces the complexity of NMR spectra and enables group identification of signals arising from the labeled IDR fragment, a process we refer to as segmental assignment . The validity of our segmental assignment approach is corroborated by backbone residue-specific assignment of the IDR using a minimal set of standard heteronuclear NMR methods. Using segmental assignment, we further demonstrate that the IDR region adjacent to the headpiece exhibits nonuniform spectral alterations in response to temperature. Subsequent residue-specific characterization revealed two segments within the IDR that responded to temperature in markedly different ways. Overall, this study represents an important step toward the selective labeling and probing of target segments within much larger IDR contexts. Additionally, the approach described offers significant savings in NMR recording time, a valuable advantage for the study of unstable IDRs, their binding interfaces, and functional mechanisms.
more »
« less
- PAR ID:
- 10312349
- Editor(s):
- van der Wel, Patrick
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 16
- Issue:
- 10
- ISSN:
- 1932-6203
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Molecular descriptions of intrinsically disordered protein regions (IDRs) are fundamental to understanding their cellular functions and regulation. NMR spectroscopy has been a leading tool in characterizing IDRs at the atomic level. In this review, we highlight recent conceptual breakthroughs in the study of IDRs facilitated by NMR and discuss emerging NMR techniques that bridge molecular descriptions to cellular functions. First, we review the assemblies formed by IDRs at various scales, from one-to-one complexes to non-stoichiometric clusters and condensates, discussing how NMR characterizes their structural dynamics and molecular interactions. Next, we explore several unique interaction modes of IDRs that enable regulatory mechanisms such as selective transport and switch-like inhibition. Finally, we highlight recent progress in solid-state NMR and in-cell NMR on IDRs, discussing how these methods allow for atomic characterization of full-length IDR complexes in various phases and cellular environments. This review emphasizes recent conceptual and methodological advancements in IDR studies by NMR and offers future perspectives on bridging the gap between in vitro molecular descriptions and the cellular functions of IDRs.more » « less
-
ABSTRACT Intrinsically disordered protein regions (IDRs) are ubiquitous across all kingdoms of life and play a variety of essential cellular roles. IDRs exist in a collection of structurally distinct conformers known as an ensemble. An IDR’s amino acid sequence determines its ensemble, which in turn can play an important role in dictating molecular function. Yet a clear link connecting IDR sequence, its ensemble properties, and its molecular function in living cells has not been directly established. Here, we set out to test this sequence-ensemble-function paradigm using a novel computational method (GOOSE) that enables the rational design of libraries of IDRs by systematically varying specific sequence properties. Using ensemble FRET, we measured the ensemble dimensions of a library of rationally designed IDRs in human-derived cell lines, revealing how IDR sequence influences ensemble dimensionsin situ.Furthermore, we show that the interplay between sequence and ensemble can tune an IDR’s ability to sense changes in cell volume - ade novomolecular function for these synthetic sequences. Our results establish biophysical rules for intracellular sequence-ensemble relationships, enable a new route for understanding how IDR sequences map to function in live cells, and set the ground for the design of synthetic IDRs withde novofunction.more » « less
-
Segmental models are sequence prediction models in which scores of hypotheses are based on entire variable-length segments of frames. We consider segmental models for whole-word ("acoustic-to-word") speech recognition, with the feature vectors defined using vector embeddings of segments. Such models are computationally challenging as the number of paths is proportional to the vocabulary size, which can be orders of magnitude larger than when using subword units like phones. We describe an efficient approach for end-to-end whole-word segmental models, with forward-backward and Viterbi decoding performed on a GPU and a simple segment scoring function that reduces space complexity. In addition, we investigate the use of pre-training via jointly trained acoustic word embeddings (AWEs) and acoustically grounded word embeddings (AGWEs) of written word labels. We find that word error rate can be reduced by a large margin by pre-training the acoustic segment representation with AWEs, and additional (smaller) gains can be obtained by pre-training the word prediction layer with AGWEs. Our final models improve over prior A2W models.more » « less
-
Intrinsically disordered protein regions (IDRs) are well established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR–RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, Small ERDK-Rich Factor (SERF). At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 Trans-Activation Response (TAR) RNA with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF–RNA system will lower the barrier to accessing the details that support IDR–RNA interactions and likewise deepen our understanding of the role of IDR–RNA contacts in complex formation and liquid–liquid phase separation.more » « less
An official website of the United States government

