skip to main content


Title: Indirect Export of Reducing Equivalents From the Chloroplast to Resupply NADP for C3 Photosynthesis—Growing Importance for Stromal NAD(H)?
Plant productivity greatly relies on a flawless concerted function of the two photosystems (PS) in the chloroplast thylakoid membrane. While damage to PSII can be rapidly resolved, PSI repair is complex and time-consuming. A major threat to PSI integrity is acceptor side limitation e.g., through a lack of stromal NADP ready to accept electrons from PSI. This situation can occur when oscillations in growth light and temperature result in a drop of CO 2 fixation and concomitant NADPH consumption. Plants have evolved a plethora of pathways at the thylakoid membrane but also in the chloroplast stroma to avoid acceptor side limitation. For instance, reduced ferredoxin can be recycled in cyclic electron flow or reducing equivalents can be indirectly exported from the organelle via the malate valve, a coordinated effort of stromal malate dehydrogenases and envelope membrane transporters. For a long time, the NADP(H) was assumed to be the only nicotinamide adenine dinucleotide coenzyme to participate in diurnal chloroplast metabolism and the export of reductants via this route. However, over the last years several independent studies have indicated an underappreciated role for NAD(H) in illuminated leaf plastids. In part, it explains the existence of the light-independent NAD-specific malate dehydrogenase in the stroma. We review the history of the malate valve and discuss the potential role of stromal NAD(H) for the plant survival under adverse growth conditions as well as the option to utilize the stromal NAD(H) pool to mitigate PSI damage.  more » « less
Award ID(s):
1847382 1553506
NSF-PAR ID:
10312378
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
12
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin–Benson–Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis. 
    more » « less
  2. Abstract

    In nature, plants experience rapid changes in light intensity and quality throughout the day. To maximize growth, they have established molecular mechanisms to optimize photosynthetic output while protecting components of the light‐dependent reaction and CO2fixation pathways. Plant phenotyping of mutant collections has become a powerful tool to unveil the genetic loci involved in environmental acclimation. Here, we describe the phenotyping of the transfer‐DNA (T‐DNA) insertion mutant line SALK_008491, previously known asnhd1‐1. Growth in a fluctuating light regime caused a loss in growth rate accompanied by a spike in photosystem (PS) II damage and increased non‐photochemical quenching (NPQ). Interestingly, an independentnhd1null allele did not recapitulate the NPQ phenotype. Through bulk sequencing of a backcrossed segregating F2pool, we identified an ~14‐kb large deletion on chromosome 3 (Chr3) in SALK_008491 affecting five genes upstream ofNHD1. BesidesNHD1, which encodes for a putative plastid Na+/H+antiporter, the stromal NAD‐dependent D‐3‐phosphoglycerate dehydrogenase 3 (PGDH3) locus was eradicated. Although some changes in the SALK_008491 mutant's photosynthesis can be assigned to the loss of PGDH3, our follow‐up studies employing respective single mutants and complementation with overlapping transformation‐competent artificial chromosome (TAC) vectors reveal that the exacerbated fluctuating light sensitivity in SALK_008491 mutants result from the simultaneous loss of PGDH3 and NHD1. Altogether, the data obtained from this large deletion‐carrying mutant provide new and unintuitive insights into the molecular mechanisms that function to protect the photosynthetic machinery. Moreover, our study renews calls for caution when setting up reverse genetic studies using T‐DNA lines. Although second‐site insertions, indels, and SNPs have been reported before, large deletion surrounding the insertion site causes yet another problem. Nevertheless, as shown through this research, such unpredictable genetic events following T‐DNA mutagenesis can provide unintuitive insights that allow for understanding complex phenomena such as the plant acclimation to dynamic high light stress.

     
    more » « less
  3. The ubiquitin-binding NBR1 autophagy receptor plays a prominent role in recognizing ubiquitylated protein aggregates for vacuolar degradation by macroautophagy. Here, we show that upon exposing Arabidopsis plants to intense light, NBR1 associates with photodamaged chloroplasts independently of ATG7, a core component of the canonical autophagy machinery. NBR1 coats both the surface and interior of chloroplasts, which is then followed by direct engulfment of the organelles into the central vacuole via a microautophagy-type process. The relocalization of NBR1 into chloroplasts does not require the chloroplast translocon complexes embedded in the envelope but is instead greatly enhanced by removing the self-oligomerization mPB1 domain of NBR1. The delivery of NBR1-decorated chloroplasts into vacuoles depends on the ubiquitin-binding UBA2 domain of NBR1 but is independent of the ubiquitin E3 ligases SP1 and PUB4, known to direct the ubiquitylation of chloroplast surface proteins. Compared to wild-type plants, nbr1 mutants have altered levels of a subset of chloroplast proteins and display abnormal chloroplast density and sizes upon high light exposure. We postulate that, as photodamaged chloroplasts lose envelope integrity, cytosolic ligases reach the chloroplast interior to ubiquitylate thylakoid and stroma proteins which are then recognized by NBR1 for autophagic clearance. This study uncovers a new function of NBR1 in the degradation of damaged chloroplasts by microautophagy. 
    more » « less
  4. Abstract Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts. The deduced K+-permeable channel was coined fast-activating chloroplast cation channel but its molecular identity remained elusive. To reveal candidates, we mined proteomic datasets of isolated pea envelopes. Our search uncovered distant members of the nuclear POLLUX ion channel family. Since pea is not amenable to molecular genetics, we used Arabidopsis thaliana to characterize the two gene homologs. Using several independent approaches, we show that both candidates localize to the chloroplast envelope membrane. The proteins, designated PLASTID ENVELOPE ION CHANNELS (PEC1/2), form oligomers with regulator of K+ conductance domains protruding into the intermembrane space. Heterologous expression of PEC1/2 rescues yeast mutants deficient in K+ uptake. Nuclear POLLUX ion channels cofunction with Ca2+ channels to generate Ca2+ signals, critical for establishing mycorrhizal symbiosis and root development. Chloroplasts also exhibit Ca2+ transients in the stroma, probably to relay abiotic and biotic cues between plastids and the nucleus via the cytosol. Our results show that pec1pec2 loss-of-function double mutants fail to trigger the characteristic stromal Ca2+ release observed in wild-type plants exposed to external stress stimuli. Besides this molecular abnormality, pec1pec2 double mutants do not show obvious phenotypes. Future studies of PEC proteins will help to decipher the plant’s stress-related Ca2+ signaling network and the role of plastids. More importantly, the discovery of PECs in the envelope membrane is another critical step towards completing the chloroplast ion transport protein inventory. 
    more » « less
  5. Summary

    A network of peptidases governs proteostasis in plant chloroplasts and mitochondria. This study reveals strong genetic and functional interactions in Arabidopsis between the chloroplast stromal CLP chaperone‐protease system and the PREP1,2 peptidases, which are dually localized to chloroplast stroma and the mitochondrial matrix.

    Higher order mutants defective in CLP or PREP proteins were generated and analyzed by quantitative proteomics and N‐terminal proteomics (terminal amine isotopic labeling of substrates (TAILS)).

    Strong synergistic interactions were observed between the CLP protease system (clpr1‐2,clpr2‐1,clpc1‐1,clpt1,clpt2)and both PREP homologs (prep1,prep2) resulting in embryo lethality or growth and developmental phenotypes. Synergistic interactions were observed even when only one of the PREP proteins was lacking, suggesting that PREP1 and PREP2 have divergent substrates. Proteome phenotypes were driven by the loss of CLP protease capacity, with little impact from the PREP peptidases. Chloroplast N‐terminal proteomesshowed that many nuclear encoded chloroplast proteins have alternatively processed N‐termini inprep1prep2,clpt1clpt2andprep1prep2clpt1clpt2.

    Loss of chloroplast protease capacity interferes with stromal processing peptidase (SPP) activity due to folding stress and low levels of accumulated cleaved cTP fragments. PREP1,2 proteolysis of cleaved cTPs is complemented by unknown proteases. A model for CLP and PREP activity within a hierarchical chloroplast proteolysis network is proposed.

     
    more » « less