skip to main content


Title: WIP: Synthesizing exemplary engineering ethics education efforts
This Work-In-Progress paper seeks to continue the development of a framework with which to organize engineering ethics instructional approaches. We build on a recent coding framework that was developed as part of a systematic review of US post-secondary engineering ethics education literature. We apply and iterate on the framework by analyzing the 2016 National Academy of Engineering report, “Infusing Ethics into the Development of Engineers: Exemplary Education Activities and Programs,” which includes two-page synopses of 25 exemplary ethics programs. By applying the framework to these exemplars, we aim to identify prominent instructional approaches utilized across NAE exemplars and the extent to which NAE exemplars’ instructional approaches differ from those identified in the prior systematic review. This WIP has three preliminary outcomes: (1) identification of trends in instructional design approaches across the NAE exemplars, (2) comparison of the instructional design approaches of NAE exemplars with the prior systematic review, and (3) identification of next steps needed to develop a more holistic picture of how ethics is taught in US post-secondary engineering contexts. Example revisions to the coding framework involved combining community-engagement and real-world exposure, broadening micro-insertion to sociotechnical integration, and coding for explicit mentoring components of instruction. A future research step involves further specification of these codes to detail how the NAE exemplars applied select instructional approaches, including heuristics, ethical theories, and case studies, and real-world engagement.  more » « less
Award ID(s):
1737303
NSF-PAR ID:
10312446
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in education
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In 2017, the report Undergraduate Research Experiences for STEM Students from the National Academy of Science and Engineering and Medicine (NASEM) invited research programs to develop experiences that extend from disciplinary knowledge and skills education. This call to action asks to include social responsibility learning goals in ethical development, cultural issues in research, and the promotion of inclusive learning environments. Moreover, the Accreditation Board for Engineering and Technology (ABET), the National Academy of Engineering (NAE), and the National Science Foundation (NSF) all agree that social responsibility is a significant component of an engineer’s professional formation and must be a guiding force in their education. Social Responsibility involves the ethical obligation engineers have to society and the environment, including responsible conduct research (RCR), ethical decision-making, human safety, sustainability, pro bono work, social justice, and diversity. For this work, we explored the views of Social Responsibility in engineering students that could provide insight into developing formal and informal educational activities for future summer programs. In this exploratory multi-methods study, we investigated the following research question: What views of social responsibility are important for engineering students conducting scientific in an NSF Research Experiences for Undergraduates (REU)? The REU Site selected for this study was a college of engineering located at a major, public, comprehensive, land-grant research university. The Views of Social Responsibility of Scientists and Engineers (VSRoSE) was used to guide our research design. This validated instrument considers the following major social responsibility elements: 1) Consideration of societal consequences, 2) Protection of human welfare and safety, 3) Promotion of environmental sustainability, 4) Efforts to minimize risks, 5) Communication with the public, and 6) Service and Community engagement. Data collection was conducted at the end of their 10-week-long experience in Summer 2022 using Qualtrics. REU students were invited to complete an IRB-approved questionnaire, including collecting demographic data, the VSRoSE-validated survey, and open-ended questions. Open-ended questions were used to explore what experiences have influenced positive student views of social responsibility and provide rich information beyond the six elements of the VSRoSE instrument. The quantitative data from the VSRoSE is analyzed using SPSS. The qualitative data is analyzed by the research team using an inductive coding approach. In this coding process, the researchers derive codes from the data allowing the narrative or theory to emerge from the raw data itself, which is great for exploratory research. The results from this exploratory study will help to strategically initiate a formal and informal research education curriculum at the selected university. In addition, the results may serve as a way for REU administrators and faculty to create metrics of impact on their research activities regarding social responsibility. Finally, this work intends to provoke the ethics and research community to have a deeper conversation about the needs and strategies to educate this unique population of students. 
    more » « less
  2. This WIP presentation is intended to share and gather feedback on the development of an observation protocol for K-12 integrated STEM instruction, the STEM-OP. Specifically, the STEM-OP is being developed for use in K-12 science and/or engineering settings where integrated STEM instruction takes place. While the importance of integrated STEM education is established through national policy documents, there remains disagreement on models and effective approaches for integrated STEM instruction. Our broad definition of integrated STEM includes the use of two or more STEM disciplines to solve a real-world problem or design challenge that supports student development of 21st century skills. This issue is confounded by the lack of observation protocols sensitive to integrated STEM teaching and learning that can be used to inform research of the effectiveness of new models and strategies. Existing instruments most commonly used by researchers, such as the Reformed Teaching Observation Protocol (RTOP), were designed prior to the development of the Next Generation Science Standards and the integration of engineering into science standards. These instruments were also designed for use in reform-based science classrooms, not engineering or integrated STEM learning environments. While engineering-focused observation protocols do exist for K-12 classrooms, they do not evaluate beyond an engineering focus, making them limited tools to evaluate integrated STEM instruction. In order to facilitate the implementation of integrated STEM in K-12 classrooms and the development of the nascent integrated STEM education literature, our research team is developing a new integrated STEM observation protocol for use in K-12 science and engineering classrooms. This valid and reliable instrument will be designed for use in a variety of educational contexts and by different education stakeholders to increase the quality of K-12 STEM education. At the end of this project, the STEM-OP will be made available through an online platform that will include an embedded training program to facilitate its broad use. In the first year of this four-year project, we are working on the initial development of the STEM-OP through video analysis and exploratory factor analysis. We are utilizing existing classroom video from a previous project with approximately 2,000 unique classroom videos representing a variety of grade levels (4-9), science content (life, earth, and physical science), engineering design challenges, and school demographics (urban, suburban). The development of the STEM-OP is guided by published frameworks that focus on providing quality K-12 integrated STEM and engineering education, such as the Framework for Quality K-12 Engineering Education. Our anticipated results at the time the ASEE meeting will include a review of our item development process and finalized items included on the draft STEM-OP. Additionally, we anticipate being able to share findings from the exploratory factor analysis (EFA) on our video-coded data, which will identify distinct instructional dimensions responsible for integrated STEM instruction. We value the opportunity to gather feedback from the engineering education community as the integration of engineering design and practices is integral to quality integrated STEM instruction. 
    more » « less
  3. The AMPLIFY project, funded through the NSF HSI Program, seeks to amplify the educational change leadership of Engineering Instructional Faculty (EIF) working at Hispanic Serving Institutions (HSIs). HSIs are public or private institutions of higher education enrolling over 25% full-time undergraduate Hispanic or Latinx-identifying students [1]. Many HSIs are exemplars of developing culturally responsive learning environments and supporting the persistence and access of Latinx engineering students, as well as students who identify as members of other marginalized populations [2]. Our interest in the EIF population at HSIs arises from the growing body of literature indicating that these faculty play a central role in educational change through targeted initiatives, such as student-centered support programs and the use of inclusive curricula that connect to their students’ cultural identities [3]–[7]. Our research focuses on exploring methods for amplifying the engineering educational change efforts at HSIs by 1) making visible the experiences of engineering instructional faculty at HSIs and 2) designing, implementing, and evaluating a leadership development model for engineering instructional faculty, thereby 3) equipping and supporting these faculty as they lead educational change efforts. To achieve these goals, our project team, comprising educational researchers, engineering instructional faculty, instructional designers, and graduate students from three HSIs (two majority-minority and one emerging HSI), seeks to address the following research questions: 1) What factors impact the self-efficacy and agency of EIF at HSIs to engage in educational change initiatives that encourage culturally responsive, evidence-based teaching within their classrooms, institutions, or beyond? 2) What are the necessary competencies for EIF to be leaders of this sort of educational change? 3) What individual, institutional, and professional development program features support the educational change leadership development of EIF at HSIs? 4) How does engagement in leadership development programming impact EIF educational leadership self-efficacy and agency toward developing and using culturally responsive and evidence-based approaches at HSIs? This multi-year project uses various qualitative, quantitative, and participatory research methods embedded in a series of action research cycles to provide a richer understanding of the successes and needs of EIF at HSIs [8]. The subsequent design and implementation of the AMPLIFY Institute will make visible the features and content of instructional faculty development programs that promote educational innovation at HSIs and foster a deeper understanding of the framework's impact on faculty innovation and leadership. 
    more » « less
  4. The past twenty years have seen the blossoming of ethics education in undergraduate engineering programs, largely as a response to the large-scale and high-impact engineering disasters that have occurred since the turn of the century. The functional form of this education differs significantly among institutions, and in recent years active learning that demonstrates a strong impact on students’ retention and synthesis of new material have taken hold as the preferred educational methodology. Among active learning strategies, gamified or playful learning has grown in popularity, with substantial evidence indicating that games can increase student participation and social interaction with their classmates and with the subject matter. A key goal of engineering ethics education is for students to learn how to identify, frame, and resolve ethical dilemmas. These dilemmas occur naturally in social situations, in which an individual must reconcile opposing priorities and viewpoints. Thus, it seems natural that as a part of their ethics education, students should discuss contextualized engineering ethical situations with their peers. How these discussions play out, and the manner in which students (particularly first-year engineering students) address and resolve ethical dilemmas in a group setting is the main topic of this research paper. In this study, first-year engineering students from three universities across the northeastern USA participated in group discussions involving engineering ethical scenarios derived from the Engineering Ethics Reasoning Instrument (EERI) and Toxic Workplaces: A Cooperative Ethics Card Game (a game developed by the researchers). Questions were posed to the student groups, which center upon concepts such as integrity, conflicting obligations, and the contextual nature of ethical decision making. An a priori coding schema based on these concepts was applied to analyze the student responses, based upon earlier iterations of this procedure performed in previous years of the study. The primary results from this research will aim to provide some insight about first-year engineering students' mindsets when identifying, framing, and resolving ethical dilemmas. This information can inform ethics education design and development strategies. Furthermore, the experimental procedure is also designed to provide a curated series of ethical engineering scenarios with accompanying discussion questions that could be adopted in any first-year classroom for instructional and evaluative purposes. 
    more » « less
  5. Previous studies have convincingly shown that traditional, content-centered, and didactic teaching methods are not effective for developing a deep understanding and knowledge transfer. Nor does it adequately address the development of critical problem-solving skills. Active and collaborative instruction, coupled with effective means to encourage student engagement, invariably leads to better student learning outcomes irrespective of academic discipline. Despite these findings, the existing construction engineering programs, for the most part, consist of a series of fragmented courses that mainly focus on procedural skills rather than on the fundamental and conceptual knowledge that helps students become innovative problem-solvers. In addition, these courses are heavily dependent on traditional lecture-based teaching methods focused on well-structured and closed-ended problems that prepare students to plug variables into equations to get the answer. Existing programs rarely offer a systematic approach to allow students to develop a deep understanding of the engineering core concepts and discover systematic solutions for fundamental problems. Without properly understanding these core concepts, contextualized in domain-specific settings, students are not able to develop a holistic view that will help them to recognize the big picture and think outside the box to come up with creative solutions for arising problems. The long history of empirical learning in the field of construction engineering shows the significant potential of cognitive development through direct experience and reflection on what works in particular situations. Of course, the complex nature of the construction industry in the twenty-first century cannot afford an education through trial and error in the real environment. However, recent advances in computer science can help educators develop virtual environments and gamification platforms that allow students to explore various scenarios and learn from their experiences. This study aims to address this need by assessing the effectiveness of guided active exploration in a digital game environment on students’ ability to discover systematic solutions for fundamental problems in construction engineering. To address this objective, through a research project funded by the NSF Division of Engineering Education and Centers (EEC), we designed and developed a scenario-based interactive digital game, called Zebel, to guide students solve fundamental problems in construction scheduling. The proposed gamified pedagogical approach was designed based on the Constructivism learning theory and a framework that consists of six essential elements: (1) modeling; (2) reflection; (3) strategy formation; (4) scaffolded exploration; (5) debriefing; and (6) articulation. We also designed a series of pre- and post-assessment instruments for empirical data collection to assess the effectiveness of the proposed approach. The proposed gamified method was implemented in a graduate-level construction planning and scheduling course. The outcomes indicated that students with no prior knowledge of construction scheduling methods were able to discover systematic solutions for fundamental scheduling problems through their experience with the proposed gamified learning method. 
    more » « less