skip to main content


Title: Aprotic Alkali Metal−O2 Batteries: Role of Cathode Surface-Mediated Processes and Heterogeneous Electrocatalysis
Alkali metal–O2 batteries (i.e., Li/Na–O2) with high specific energies are promising alternatives to state-of-the-art metal-ion batteries. However, they are plagued by challenges arising from the underlying redox chemistry, resulting in reduced efficiencies. These challenges for Li/Na–O2 batteries stem from the nature of the interface between solid discharge product(s) and either (i) the aprotic electrolyte or (ii) the solid cathode. In the former, the reactive nature of the solid/liquid interface leads to chemical disproportionation of the discharge product(s) and the electrolyte, while in the latter, the presence/lack of atomistic interactions at the solid–solid interface leads to large overpotential losses (>1 V) during charging. Approaches to overcome these challenges would involve decoupling these factors. For instance, the use of inert aprotic electrolytes would facilitate catalytically driven, surface-mediated discharge product(s) growth, providing avenues to use cathode surface modifications as levers to enhance voltaic efficiency and discharge product stability, resulting in improved performance.  more » « less
Award ID(s):
1935581 2312634
NSF-PAR ID:
10312575
Author(s) / Creator(s):
Date Published:
Journal Name:
ACS energy letters
Volume:
6
ISSN:
2380-8195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sodium-containing batteries have the potential to address many of the challenges faced in the ongoing development of enhanced energy storage devices. Sodium is inexpensive and earth abundant, and aprotic Na−O2 batteries, in particular, have gravimetric energy densities significantly exceeding those of Li-ion devices. However, poor functional cell lifespans present a significant obstacle to the development of Na−O2 cells, with parasitic side reactions involving the NaO2 discharge products, leading to a rapid decline in cell performance. These parasitic reactions are hypothesized to occur through two main pathways: (i) deleterious dissolution of NaO2 into the electrolyte during periods of cell idling and (ii) disproportionation of NaO2 in the near-surface region to form Na-rich species (Na1+xO2) on the cathode. To formulate practical strategies to suppress these processes, in turn, the development of fundamental, molecular-level mechanistic understanding is essential. In this contribution, such mechanistic insights are elucidated by coupling density functional theory calculations with experimental observations to study the surface chemistry of the NaO2 discharge product. First, a series of ab initio surface phase diagrams are constructed to determine the structure of the NaO2 surfaces under realistic operating conditions, whereby an inverse relationship between surface coordination and surface energy is determined. Next, a molecular surface dissolution analysis is performed for the identified surface terminations, demonstrating a further inverse relationship between surface energy and the thermodynamic barrier for dissolution. Finally, a study of the thermodynamics of thin-film formation of sodium oxides over the NaO2 discharge product is carried out and suggests that an electrochemical reduction reaction, rather than an inherent chemical disproportionation, forms the observed Na-rich species in the near-surface region under high discharge overpotentials. From these insights, we suggest future studies that may yield practical design changes to improve stability and extend the lifespan of Na−O2 batteries. 
    more » « less
  2. Sodium-containing batteries have the potential to address many of the challenges faced in the ongoing development of enhanced energy storage devices. Sodium is inexpensive and earth abundant, and aprotic Na−O2 batteries, in particular, have gravimetric energy densities significantly exceeding those of Li-ion devices. However, poor functional cell lifespans present a significant obstacle to the development of Na−O2 cells, with parasitic side reactions involving the NaO2 discharge products, leading to a rapid decline in cell performance. These parasitic reactions are hypothesized to occur through two main pathways: (i) deleterious dissolution of NaO2 into the electrolyte during periods of cell idling and (ii) disproportionation of NaO2 in the near-surface region to form Na-rich species (Na1+xO2) on the cathode. To formulate practical strategies to suppress these processes, in turn, the development of fundamental, molecular-level mechanistic understanding is essential. In this contribution, such mechanistic insights are elucidated by coupling density functional theory calculations with experimental observations to study the surface chemistry of the NaO2 discharge product. First, a series of ab initio surface phase diagrams are constructed to determine the structure of the NaO2 surfaces under realistic operating conditions, whereby an inverse relationship between surface coordination and surface energy is determined. Next, a molecular surface dissolution analysis is performed for the identified surface terminations, demonstrating a further inverse relationship between surface energy and the thermodynamic barrier for dissolution. Finally, a study of the thermodynamics of thin-film formation of sodium oxides over the NaO2 discharge product is carried out and suggests that an electrochemical reduction reaction, rather than an inherent chemical disproportionation, forms the observed Na-rich species in the near-surface region under high discharge overpotentials. From these insights, we suggest future studies that may yield practical design changes to improve stability and extend the lifespan of Na−O2 batteries. 
    more » « less
  3. Metal-ion batteries (e.g., lithium and sodium ion batteries) are the promising power sources for portable electronics, electric vehicles, and smart grids. Recent metal-ion batteries with organic liquid electrolytes still suffer from safety issues regarding inflammability and insufficient lifetime.1 As the next generation energy storage devices, all-solid-state batteries (ASSBs) have promising potentials for the improved safety, higher energy density, and longer cycle life than conventional Li-ion batteries.2 The nonflammable solid electrolytes (SEs), where only Li ions are mobile, could prevent battery combustion and explosion since the side reactions that cause safety issues as well as degradation of the battery performance are largely suppressed. However, their practical application is hampered by the high resistance arising at the solid–solid electrode–electrolyte interface (including cathode-electrolyte interface and anode-electrolyte interface).3 Several methods have been introduced to optimize the contact capability as well as the electrochemical/chemical stability between the metal anodes (i.e.: Li and Na) and the SEs, which exhibited decent results in decreasing the charge transfer resistance and broadening the range of the stable energy window (i.e., lowing the chemical potential of metal anode below the highest occupied molecular orbital of the SEs).4 Nevertheless, mitigation for the cathode in ASSB is tardily developed because: (1) the porous structure of the cathode is hard to be infiltrated by SEs;5 (2) SEs would be oxidized and decomposed by the high valence state elements at the surface of the cathode at high state of charge.5 Herein, we demonstrate a universal cathode design strategy to achieve superior contact capability and high electrochemical/chemical stability with SEs. Stereolithography is adopted as a manufacturing technique to realize a hierarchical three-dimensional (HTD) electrode architecture with micro-size channels, which is expected to provide larger contact areas with SEs. Then, the manufactured cathode is sintered at 700 °C in a reducing atmosphere (e.g.: H2) to accomplish the carbonization of the resin, delivering sufficiently high electronic conductivity for the cathode. To avoid the direct exposure of the cathode active materials to the SEs, oxidative chemical vapor deposition technique (oCVD) is leveraged to build conformal and highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) on the surface of the HTD cathode.6 To demonstrate our design strategy, both NCM811 and Na3V2(PO4)3 is selected as active materials in the HTD cathode, then each cathode is paired with organic (polyacrylonitrile-based) and inorganic (sulfur-based) SEs assembled into two batteries (total four batteries). SEM and TEM reveal the micro-size HTD structure with built-in channels. Featured by the HTD architecture, the intrinsic kinetic and thermodynamic conditions will be enhanced by larger surface contact areas, more active sites, improved infusion and electrolyte ion accessibility, and larger volume expansion capability. Disclosed by X-ray computed tomography, the interface between cathode and SEs in the four modified samples demonstrates higher homogeneity at the interface between the cathode and SEs than that of all other pristine samples. Atomic force microscopy is employed to measure the potential image of the cross-sectional interface by the peak force tapping mode. The average potential of modified samples is lower than that of pristine samples, which confirms a weakened space charge layer by the enhanced contact capability. In addition, through Electron Energy Loss Spectroscopy coupled with Scanning Transmission Electron Microscopy, the preserved interface between HTD cathode and SE is identified; however, the decomposing of the pristine cathode is clearly observed. In addition, Finite element method simulations validate that the diffusion dynamics of lithium ions is favored by HTD structure. Such a demonstrated universal strategy provides a new guideline to engineer cathode electrolyte interface by reconstructing electrode structures that can be applicable to all solid-state batteries in a wide range of chemical conditions. 
    more » « less
  4. In Li–S batteries, the insulating nature of sulfur and Li 2 S causes enormous challenges, such as high polarization and low active material utilization. The nucleation of the solid discharge product, Li 2 S, during the discharge cycle, and the activation of Li 2 S in the subsequent charge cycle, cause a potential challenge that needs to be overcome. Moreover, the shuttling of soluble lithium polysulfide intermediate species results in active material loss and early capacity fade. In this study, we have used thiourea as an electrolyte additive and showed that it serves as both a redox mediator to overcome the Li 2 S activation energy barrier and a shuttle inhibitor to mitigate the notorious polysulfide shuttling via the investigation of thiourea redox activity, shuttle current measurements and study of Li 2 S activation. The steady-state shuttle current of the Li–S battery shows a 6-fold drop when 0.02 M thiourea is added to the standard electrolyte. Moreover, by adding thiourea, the charge plateau for the first cycle of the Li 2 S based cathodes shifts from 3.5 V (standard ether electrolyte) to 2.5 V (with 0.2 M thiourea). Using this additive, the capacity of the Li–S battery stabilizes at ∼839 mA h g −1 after 5 cycles and remains stable over 700 cycles with a low capacity decay rate of 0.025% per cycle, a tremendous improvement compared to the reference battery that retains only ∼350 mA h g −1 after 300 cycles. In the end, to demonstrate the practical and broad applicability of thiourea in overcoming sulfur-battery challenges and in eliminating the need for complex electrode design, we study two additional battery systems – lithium metal-free cells with a graphite anode and Li 2 S cathode, and Li–S cells with simple slurry-based cathodes fabricated via blending commercial carbon black/S and a binder. We believe that this study manifests the advantages of redox active electrolyte additives to overcome several bottlenecks in the Li–S battery field. 
    more » « less
  5. All-solid-state batteries (ASSBs) have garnered increasing attention due to the enhanced safety, featuring nonflammable solid electrolytes as well as the potential to achieve high energy density. 1 The advancement of the ASSBs is expected to provide, arguably, the most straightforward path towards practical, high-energy, and rechargeable batteries based on metallic anodes. 1 However, the sluggish ion transmission at the cathode-electrolyte (solid/solid) interface would result in the high resistant at the contact and limit the practical implementation of these all solid-state materials in real world batteries. 2 Several methods were suggested to enhance the kinetic condition of the ion migration between the cathode and the solid electrolyte (SE). 3 A composite strategy that mixes active materials and SEs for the cathode is a general way to decrease the ion transmission barrier at the cathode-electrolyte interface. 3 The active material concentration in the cathode is reduced as much as the SE portion increases by which the energy density of the ASSB is restricted. In addition, the mixing approach generally accompanies lattice mismatches between the cathode active materials and the SE, thus providing only limited improvements, which is imputed by random contacts between the cathode active materials and the SE during the mixing process. Implementing high-pressure for the electrode and electrolyte of ASSB in the assembling process has been verified is a but effective way to boost the ion transmission ability between the cathode active materials and the SE by decreasing the grain boundary impedance. Whereas the short-circuit of the battery would be induced by the mechanical deformation of the electrolyte under high pressure. 4 Herein, we demonstrate a novel way to address the ion transmission problem at the cathode-electrolyte interface in ASSBs. Starting from the cathode configuration, the finite element method (FEM) was employed to evaluate the current concentration and the distribution of the space charge layer at the cathode-electrolyte interface. Hierarchical three-dimensional (HTD) structures are found to have a higher Li + transfer number (t Li+ ), fewer free anions, and the weaker space-charge layer at the cathode-electrolyte interface in the resulting FEM simulation. To take advantage of the HTD structure, stereolithography is adopted as a manufacturing technique and single-crystalline Ni-rich (SCN) materials are selected as the active materials. Next, the manufactured HTD cathode is sintered at 600 °C in an N 2 atmosphere for the carbonization of the resin, which induces sufficient electronic conductivity for the cathode. Then, the gel-like Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 (LATP) precursor is synthesized and filled into the voids of the HTD structure cathode sufficiently. And the filled HTD structure cathodes are sintered at 900 °C to achieve the crystallization of the LATP gel. Scanning transmission electron microscopy (STEM) is used to unveil the morphology of the cathode-electrolyte interface between the sintered HTD cathode and the in-situ generated electrolyte (LATP). A transient phase has been found generated at the interface and matched with both lattices of the SCN and the SE, accelerating the transmission of the Li-ions, which is further verified by density functional theory calculations. In addition, Electron Energy Loss Spectroscopy demonstrates the preserved interface between HTD cathode and SEs. Atomic force microscopy is employed to measure the potential image of the cross-sectional interface by the peak force tapping mode. The average potential of modified samples is lower than the sample that mix SCN and SEs simply in the 2D planar structure, which confirms a weakened space charge layer by the enhanced contact capability as well as the ion transmission ability. To see if the demonstrated method is universally applicable, LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) is selected as the cathode active material and manufactured in the same way as the SCN. The HTD cathode based on NCM811 exhibits higher electrochemical performance compared with the reference sample based on the 2D planar mixing-type cathode. We believe such a demonstrated universal strategy provides a new guideline to engineer the cathode/electrolyte interface by revolutionizing electrode structures that can be applicable to all-solid-state batteries. Figure 1. Schematic of comparing of traditional 2D planar cathode and HTD cathode in ASSB Tikekar, M. D. , et al. , Nature Energy (2016) 1 (9), 16114 Banerjee, A. , et al. , Chem Rev (2020) 120 (14), 6878 Chen, R. , et al. , Chem Rev (2020) 120 (14), 6820 Cheng, X. , et al. , Advanced Energy Materials (2018) 8 (7) Figure 1 
    more » « less