In this work, we present Robots for Social Justice (R4SJ): a framework for an equitable engineering practice of Human-Robot Interaction, grounded in the Engineering for Social Justice (E4SJ) framework for Engineering Education and intended to complement existing frameworks for guiding equitable HRI research. To understand the new insights this framework could provide to the field of HRI, we analyze the past decade of papers published at the ACM/IEEE International Conference on Human-Robot Interaction, and examine how well current HRI research aligns with the principles espoused in the E4SJ framework. Based on the gaps identified through this analysis, we make five concrete recommendations, and highlight key questions that can guide the introspection for engineers, designers, and researchers. We believe these considerations are a necessary step not only to ensure that our engineering education efforts encourage students to engage in equitable and societally beneficial engineering practices (the purpose of E4SJ), but also to ensure that the technical advances we present at conferences like HRI promise true advances to society, and not just to fellow researchers and engineers.
more »
« less
Human Capabilities as Guiding Lights for the Field of AI-HRI: Insights from Engineering Education
In this paper, we explore the role that theories of Social Justice from the Engineering Education literature may play in the field of AI-HRI, explore the extent to which the recommendations made by such theories are or are not already being followed in our community, and envision a future in which our research community takes guidance from these theories. In particular, we explore the recent past and envisioned futures of AI-HRI through the lens of the Engineering for Social Justice (E4SJ) framework due to its emphasis on contextual listening and enhancement of human capabilities.
more »
« less
- Award ID(s):
- 1909847
- PAR ID:
- 10312684
- Date Published:
- Journal Name:
- AAAI Fall Symposium on AI-for-HRI
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we present Robots for Social Justice (R4SJ): a framework for an equitable engineering practice of Human-Robot Interaction, grounded in the Engineering for Social Justice (E4SJ) framework for Engineering Education and intended to complement existing frameworks for guiding equitable HRI research. To understand the new insights this framework could provide to the feld of HRI, we analyze the past decade of papers published at the ACM/IEEE International Conference on Human-Robot Interaction, and examine how well current HRI research aligns with the principles espoused in the E4SJ framework. Based on the gaps identifed through this analysis, we make fve concrete recommendations, and highlight key questions that can guide the introspection for engineers, designers, and researchers. We believe these considerations are a necessary step not only to ensure that our engineering education eforts encourage students to engage in equitable and societally benefcial engineering practices (the purpose of E4SJ), but also to ensure that the technical advances we present at conferences like HRI promise true advances to society, and not just to fellow researchers and engineers.more » « less
-
As engineers shape the future of technology and society, embedding human rights into engineering education is essential for fostering ethical practices, enhancing access to technological benefits, and addressing harm caused by engineered products or processes. This research will examine the attitudes of engineering students toward human rights and will explore the effectiveness of targeted educational interventions in fostering a deeper understanding of the intersection between engineering and human rights principles. Conducted with a senior design engineering class, the research will use pre- and post-intervention surveys to measure changes in students’ perceptions. The intervention consists of asynchronous online modules that integrate foundational human rights concepts with practical engineering applications, including sustainability, ethics, and social justice. The modules are organized around six key clusters, but this poster focuses on cybersecurity, privacy, and human vulnerability. Using a case study of Emancipatory AI, the poster highlights its potential to empower marginalized groups by breaking down barriers to technology access. This case study illustrates how human rights principles, including equity and accessibility, can guide the ethical development and application of AI to address systemic inequalities and promote social inclusion. We aim for this poster to encourage reflection on the role of human rights in engineering and the ways AI can be leveraged as a tool for the social good. This work reinforces the importance of integrating human rights considerations into engineering practice to create more inclusive and just technological solutions.more » « less
-
Multiple studies call for engineering education to integrate social justice into classroom instruction. Yet, there is uncertainty regarding whether integrating these social topics into engineering curriculum will support or detract from the learning of technical concepts. This study focuses on evaluating how reframing technical assessments to include social justice concepts impacts student learning and investigates how well students integrate social justice into engineering decision making. Using a within-subject design, in which students were exposed to both conditions (questions with and without social justice context), we evaluate how social justice framing impacts overall student learning of technical topics. Social justice prompts are added to homework questions, and we assess students’ demonstration of knowledge of original technical content of the course, as well as their ability to consider social justice implications of engineering design. In the earlier homework assignment, the experimental group showed a significant decrease in learning when technical concepts were framed to include social justice. As the students became more familiar with social justice considerations, their learning of technical concepts became comparable to that of students who did not have the social justice components in their assignment. Their evaluation of the social implications of technical decisions also improved. History: This paper has been accepted for the INFORMS Transactions on Education Special Issue on DEI in ORMS Classrooms. Funding: This work was supported by the Carnegie Mellon University’s Wimmer Faculty Fellowship and the National Science Foundation [Grant 2053856]. D. Nock also acknowledges support from the Wilton E. Scott Institute for Energy Innovation, where she is an energy fellow.more » « less
-
When confronted with systematic racism, social justice, and equity issues, engineering and STEM education often assumes that these topics will be covered in other courses and are not relevant to STEM. However, engineering as a discipline has one of the greatest effects on society’s well-being. From the raw materials used, products created, and emissions generated, all aspects of engineering have direct and indirect impacts on humanity. Our current engineering education project works with upper elementary and middle school teachers to apply a culturally relevant engineering design (CRED) framework within their classrooms. This framework is adapted from UTeachEngineering and culturally relevant pedagogy from Gay and Billings is embedded within each step of the design process. The North Dakota Native American Essential Understandings are used to frame and inform the culturally relevant pedagogy. Tribal elder’s stories and experiences are centered along with community leaders in each of the school’s communities. Responses from students and teachers has been overwhelmingly positive. Teachers have noticed increased engagement from all students when cultural and community leaders have been invited into the classroom and involved in the engineering design process. Students who normally do not see themselves represented in STEM professions have taken active leadership roles in their group’s engineering design process. Teachers have also recognized that culturally relevant pedagogy can be utilized in all aspects of their curricula. With the success of the project in elementary and middle school classrooms, the question then became, how can we see similar success in our college classrooms? When brainstorming how to incorporate culture and community in our curricula it became apparent that best practices in engineering education have the opportunity to intentionally involve community and cultural leaders. ABET learning outcomes require the “consideration of public health, safety, and welfare” in engineering design and “the impact of engineering solutions in global, economic, environmental, and societal contexts.” When making engineering design decisions, who will be affected if there is an accidental release of chemicals to the environment? Which communities are affected by global warming? Will the public be able to afford the new product that is being produced? Will the new processes or products add value to people’s lives? And how do we train future engineers to consider all community members, not just those who look like them, but those from the most marginalized groups? This talk will introduce our culturally relevant engineering design framework, provide ways to include community and cultural leaders within courses, and how, with the help of Northwestern’s Anti-Racism, Diversity, Equity and Inclusion resources, to create homework problems that reflect social justice and equity issues within engineeringmore » « less
An official website of the United States government

