skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robots for Social Justice (R4SJ): Toward a More Equitable Practice of Human-Robot Interaction
In this work, we present Robots for Social Justice (R4SJ): a framework for an equitable engineering practice of Human-Robot Interaction, grounded in the Engineering for Social Justice (E4SJ) framework for Engineering Education and intended to complement existing frameworks for guiding equitable HRI research. To understand the new insights this framework could provide to the field of HRI, we analyze the past decade of papers published at the ACM/IEEE International Conference on Human-Robot Interaction, and examine how well current HRI research aligns with the principles espoused in the E4SJ framework. Based on the gaps identified through this analysis, we make five concrete recommendations, and highlight key questions that can guide the introspection for engineers, designers, and researchers. We believe these considerations are a necessary step not only to ensure that our engineering education efforts encourage students to engage in equitable and societally beneficial engineering practices (the purpose of E4SJ), but also to ensure that the technical advances we present at conferences like HRI promise true advances to society, and not just to fellow researchers and engineers.  more » « less
Award ID(s):
2044865
PAR ID:
10488565
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM/IEEE International Conference on Human-Robot Interaction
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we present Robots for Social Justice (R4SJ): a framework for an equitable engineering practice of Human-Robot Interaction, grounded in the Engineering for Social Justice (E4SJ) framework for Engineering Education and intended to complement existing frameworks for guiding equitable HRI research. To understand the new insights this framework could provide to the feld of HRI, we analyze the past decade of papers published at the ACM/IEEE International Conference on Human-Robot Interaction, and examine how well current HRI research aligns with the principles espoused in the E4SJ framework. Based on the gaps identifed through this analysis, we make fve concrete recommendations, and highlight key questions that can guide the introspection for engineers, designers, and researchers. We believe these considerations are a necessary step not only to ensure that our engineering education eforts encourage students to engage in equitable and societally benefcial engineering practices (the purpose of E4SJ), but also to ensure that the technical advances we present at conferences like HRI promise true advances to society, and not just to fellow researchers and engineers. 
    more » « less
  2. In this paper, we explore the role that theories of Social Justice from the Engineering Education literature may play in the field of AI-HRI, explore the extent to which the recommendations made by such theories are or are not already being followed in our community, and envision a future in which our research community takes guidance from these theories. In particular, we explore the recent past and envisioned futures of AI-HRI through the lens of the Engineering for Social Justice (E4SJ) framework due to its emphasis on contextual listening and enhancement of human capabilities. 
    more » « less
  3. Abstract Recent major investments in infrastructure in the United States and globally present a crucial opportunity to embed equity within the heart of resilient infrastructure decision-making. Yet there is a notable absence of frameworks within the engineering and scientific fields for integrating equity into planning, design, and maintenance of infrastructure. Additionally, whole-of-government approaches to infrastructure, including the Justice40 Initiative, mimic elements of process management that support exploitative rather than exploratory innovation. These and other policies risk creating innovation traps that limit analytical and engineering advances necessary to prioritize equity in decision-making, identification and disruption of mechanisms that cause or contribute to inequities, and remediation of historic harms. Here, we propose a three-tiered framework toward equitable and resilient infrastructure through restorative justice, incremental policy innovation, and exploratory research innovation. This framework aims to ensure equitable access and benefits of infrastructure, minimize risk disparities, and embrace restorative justice to repair historical and systemic inequities. We outline incremental policy innovation and exploratory research action items to address and mitigate risk disparities, emphasizing the need for community-engaged research and the development of equity metrics. Among other action items, we recommend a certification system—referred to as Social, Environmental, and Economic Development (SEED)—to train infrastructure engineers and planners and ensure attentiveness to gaps that exist within and dynamically interact across each tier of the proposed framework. Through the framework and proposed actions, we advocate for a transformative vision for equitable infrastructure that emphasizes the interconnectedness of social, environmental, and technical dimensions in infrastructure planning, design, and maintenance. 
    more » « less
  4. Human emotions are expressed through multiple modalities, including verbal and non-verbal information. Moreover, the affective states of human users can be the indicator for the level of engagement and successful interaction, suitable for the robot to use as a rewarding factor to optimize robotic behaviors through interaction. This study demonstrates a multimodal human-robot interaction (HRI) framework with reinforcement learning to enhance the robotic interaction policy and personalize emotional interaction for a human user. The goal is to apply this framework in social scenarios that can let the robots generate a more natural and engaging HRI framework. 
    more » « less
  5. Social robots have recently been gaining attention in the education field. Given their capabilities, researchers can use social robots in various ways that support human-robot interactions. In this paper, we present an interactive cybersecurity education program to teach children about foundation cybersecurity concepts using a social robot. To create child-robot interactions in cybersecurity education, we devised three processes. First, in collaboration with practicing teachers we developed an interactive story to support student engagement and learning of cybersecurity concepts. Second, we prototyped animations for the story on the social robot. Third, we use a mixed-methods approach to pilot test our cybersecurity education program. Our research highlights the potential of social robot use in education, both for child-robot interaction and K-12 cybersecurity education. 
    more » « less