skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CellPAINT: Turnkey Illustration of Molecular Cell Biology
CellPAINT is an interactive digital tool that allows non-expert users to create illustrations of the molecular structure of cells and viruses. We present a new release with several key enhancements, including the ability to generate custom ingredients from structure information in the Protein Data Bank, and interaction, grouping, and locking functions that streamline the creation of assemblies and illustration of large, complex scenes. An example of CellPAINT as a tool for hypothesis generation in the interpretation of cryoelectron tomograms is presented. CellPAINT is freely available at http://ccsb.scripps.edu/cellpaint .  more » « less
Award ID(s):
1832184
PAR ID:
10312709
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Bioinformatics
Volume:
1
ISSN:
2673-7647
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data analysis is an exploratory, interactive, and often collaborative process. Computational notebooks have become a popular tool to support this process, among others because of their ability to interleave code, narrative text, and results. However, notebooks in practice are often criticized as hard to maintain and being of low code quality, including problems such as unused or duplicated code and out-of-order code execution. Data scientists can benefit from better tool support when maintaining and evolving notebooks. We argue that central to such tool support is identifying the structure of notebooks. We present a lightweight and accurate approach to extract notebook structure and outline several ways such structure can be used to improve maintenance tooling for notebooks, including navigation and finding alternatives. 
    more » « less
  2. We would like to use the Coq proof assistant to mechanically verify properties of Haskell programs. To that end, we present a tool, named hs-to-coq, that translates total Haskell programs into Coq programs via a shallow embedding. We apply our tool in three case studies -- a lawful Monad instance, ``Hutton's razor'', and an existing data structure library -- and prove their correctness. These examples show that this approach is viable: both that hs-to-coq applies to existing Haskell code, and that the output it produces is amenable to verification. 
    more » « less
  3. Abstract MotivationTools for pairwise alignments between 3D structures of proteins are of fundamental importance for structural biology and bioinformatics, enabling visual exploration of evolutionary and functional relationships. However, the absence of a user-friendly, browser-based tool for creating alignments and visualizing them at both 1D sequence and 3D structural levels makes this process unnecessarily cumbersome. ResultsWe introduce a novel pairwise structure alignment tool (rcsb.org/alignment) that seamlessly integrates into the RCSB Protein Data Bank (RCSB PDB) research-focused RCSB.org web portal. Our tool and its underlying application programming interface (alignment.rcsb.org) empowers users to align several protein chains with a reference structure by providing access to established alignment algorithms (FATCAT, CE, TM-align, or Smith–Waterman 3D). The user-friendly interface simplifies parameter setup and input selection. Within seconds, our tool enables visualization of results in both sequence (1D) and structural (3D) perspectives through the RCSB PDB RCSB.org Sequence Annotations viewer and Mol* 3D viewer, respectively. Users can effortlessly compare structures deposited in the PDB archive alongside more than a million incorporated Computed Structure Models coming from the ModelArchive and AlphaFold DB. Moreover, this tool can be used to align custom structure data by providing a link/URL or uploading atomic coordinate files directly. Importantly, alignment results can be bookmarked and shared with collaborators. By bridging the gap between 1D sequence and 3D structures of proteins, our tool facilitates deeper understanding of complex evolutionary relationships among proteins through comprehensive sequence and structural analyses. Availability and implementationThe alignment tool is part of the RCSB PDB research-focused RCSB.org web portal and available at rcsb.org/alignment. Programmatic access is available via alignment.rcsb.org. Frontend code has been published at github.com/rcsb/rcsb-pecos-app. Visualization is powered by the open-source Mol* viewer (github.com/molstar/molstar and github.com/molstar/rcsb-molstar) plus the Sequence Annotations in 3D Viewer (github.com/rcsb/rcsb-saguaro-3d). 
    more » « less
  4. Abstract Machine learning (ML) is emerging as a powerful tool to predict the properties of materials, including glasses. Informing ML models with knowledge of how glass composition affects short-range atomic structure has the potential to enhance the ability of composition-property models to extrapolate accurately outside of their training sets. Here, we introduce an approach wherein statistical mechanics informs a ML model that can predict the non-linear composition-structure relations in oxide glasses. This combined model offers an improved prediction compared to models relying solely on statistical physics or machine learning individually. Specifically, we show that the combined model accurately both interpolates and extrapolates the structure of Na2O–SiO2glasses. Importantly, the model is able to extrapolate predictions outside its training set, which is evidenced by the fact that it is able to predict the structure of a glass series that was kept fully hidden from the model during its training. 
    more » « less
  5. Gorodkin, Jan (Ed.)
    Abstract Summary We present a new graphical tool for RNA secondary structure analysis. The central feature is the ability to visually compare/contrast up to three base pairing configurations for a given sequence in a compact, standardized circular arc diagram layout. This is complemented by a built-in CT-style file viewer and radial layout substructure viewer which are directly linked to the arc diagram window via the zoom selection tool. Additional functionality includes the computation of some numerical information, and the ability to export images and data for later use. This tool should be of use to researchers seeking to better understand similarities and differences between structural alternatives for an RNA sequence. Availability and implementation https://github.com/gtDMMB/RNAStructViz/wiki. 
    more » « less