skip to main content


Title: Decoupling between calorimetric and dynamical glass transitions in high-entropy metallic glasses
Abstract Glass transition is one of the unresolved critical issues in solid-state physics and materials science, during which a viscous liquid is frozen into a solid or structurally arrested state. On account of the uniform arrested mechanism, the calorimetric glass transition temperature ( T g ) always follows the same trend as the dynamical glass transition (or α -relaxation) temperature ( T α ) determined by dynamic mechanical analysis (DMA). Here, we explored the correlations between the calorimetric and dynamical glass transitions of three prototypical high-entropy metallic glasses (HEMGs) systems. We found that the HEMGs present a depressed dynamical glass transition phenomenon, i.e ., HEMGs with moderate calorimetric T g represent the highest T α and the maximum activation energy of α -relaxation. These decoupled glass transitions from thermal and mechanical measurements reveal the effect of high configurational entropy on the structure and dynamics of supercooled liquids and metallic glasses, which are associated with sluggish diffusion and decreased dynamic and spatial heterogeneities from high mixing entropy. The results have important implications in understanding the entropy effect on the structure and properties of metallic glasses for designing new materials with plenteous physical and mechanical performances.  more » « less
Award ID(s):
1804320
NSF-PAR ID:
10312955
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An experimental study of the configurational thermodynamics for a series of near-eutectic Pt80-xCuxP20bulk metallic glass-forming alloys is reported where 14 <x< 27. The undercooled liquid alloys exhibit very high fragility that increases asxdecreases, resulting in an increasingly sharp glass transition. With decreasingx, the extrapolated Kauzmann temperature of the liquid,TK, becomes indistinguishable from the conventionally defined glass transition temperature,Tg. Forx< 17, the observed liquid configurational enthalpy vs.Tdisplays a marked discontinuous drop or latent heat at a well-defined freezing temperature,Tgm. The entropy drop for this first-order liquid/glass transition is approximately two-thirds of the entropy of fusion of the crystallized eutectic alloy. BelowTgm, the configurational entropy of the frozen glass continues to fall rapidly, approaching that of the crystallized eutectic solid in the low T limit. The so-called Kauzmann paradox, with negative liquid entropy (vs. the crystalline state), is averted and the liquid configurational entropy appears to comply with the third law of thermodynamics. Despite their ultrafragile character, the liquids atx= 14 and 16 are bulk glass formers, yielding fully glassy rods up to 2- and 3-mm diameter on water quenching in thin-wall silica tubes. The low Cu content alloys are definitive examples of glasses that exhibit first-order melting.

     
    more » « less
  2. When aged below the glass transition temperature,Tg, the density of a glass cannot exceed that of the metastable supercooled liquid (SCL) state, unless crystals are nucleated. The only exception is when another polyamorphic SCL state exists, with a density higher than that of the ordinary SCL. Experimentally, such polyamorphic states and their corresponding liquid–liquid phase transitions have only been observed in network-forming systems or those with polymorphic crystalline states. In otherwise simple liquids, such phase transitions have not been observed, either in aged or vapor-deposited stable glasses, even near the Kauzmann temperature. Here, we report that the density of thin vapor-deposited films ofN,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD) can exceed their corresponding SCL density by as much as 3.5% and can even exceed the crystal density under certain deposition conditions. We identify a previously unidentified high-density supercooled liquid (HD-SCL) phase with a liquid–liquid phase transition temperature (TLL) ∼35 K below the nominal glass transition temperature of the ordinary SCL. The HD-SCL state is observed in glasses deposited in the thickness range of 25 to 55 nm, where thin films of the ordinary SCL have exceptionally enhanced surface mobility with large mobility gradients. The enhanced mobility enables vapor-deposited thin films to overcome kinetic barriers for relaxation and access the HD-SCL state. The HD-SCL state is only thermodynamically favored in thin films and transforms rapidly to the ordinary SCL when the vapor deposition is continued to form films with thicknesses more than 60 nm.

     
    more » « less
  3. Many phase change materials (PCMs) are found to crystallize without exhibiting a glass transition endotherm upon reheating. In this paper, we review experimental evidence revealing that these PCMs and likely other hyperquenched molecular and metallic systems can crystallize from the glassy state when reheated at a standard rate. Among these evidences, PCMs annealed below the glass transition temperature T g exhibit slower crystallization kinetics despite an increase in the number of sub-critical nuclei that should promote the crystallization speed. Flash calorimetry uncovers the glass transition endotherm hidden by crystallization and reveals a distinct change in kinetics when crystallization switches from the glassy to the supercooled liquid state. The resulting T g value also rationalizes the presence of the pre- T g relaxation exotherm ubiquitous of hyperquenched systems. Finally, the shift in crystallization temperature during annealing exhibits a non-exponential decay that is characteristic of structural relaxation in the glass. Modeling using a modified Turnbull equation for nucleation rate supports the existence of sub- T g fast crystallization and emphasizes the benefit of a fragile-to-strong transition for PCM applications due to a reduction in crystallization at low temperature (improved data retention) and increasing its speed at high temperature (faster computing). 
    more » « less
  4. Abstract

    Ultra‐stable amorphous fluoropolymers glasses were created using vacuum pyrolysis deposition (VPD). Glass films with thickness ranging from 90 to 160 nm were grown at a substrate temperature of 0.86Tg, whereTgis the glass transition temperature of the virgin polymer and is in units of K. Atomic force microscope (AFM) dilatometry measurements were conducted to investigate density behavior of the ultra‐stable glasses. Thickness measurements were made in stepwise fashion over a range of temperatures from ambient to above theTg. Results show that the intersections of the line for the equilibrium liquid and those for the rejuvenated and stable glasses identifying the fictive temperatureTfresult inTf, rejuvenated = 347.3 K andTf, stable = 269.5 K, that is, nearly 80 K below theTgof the rejuvenated material and well below the notional Kauzmann temperature as estimated from the Vogel‐Fultcher‐Tammann (VFT) analysis of the cooling rate dependence of the calorimetric glass transition temperature reported previously. The results corroborate the published calorimetric results on the same ultra‐stable fluoropolymer glasses that witnessedTfreductions of up to 62.6 K below theTgof the rejuvenated system. In addition, to demonstrate the versatility of the AFM dilatometry methodology for the thin film response, isothermal de‐aging experiments were carried out to illustrate the devitrification kinetics. We also carried out one of the Kovacs’ signature key experiments, the asymmetry of approach, to further illustrate the method.

     
    more » « less
  5. We demonstrate how the temperature dependence of perylene's fluorescence emission spectrum doped in bulk polymer matrices is sensitive to the local glass transition dynamics of the surrounding polymer segments. Focusing on the first fluorescence peak, we show that the intensity ratio I Ratio ( T ) = I Peak ( T )/ I SRR between the first peak and a self referencing region (SRR) has a temperature dependence resulting from the temperature-dependent nonradiative decay pathway of the excited perylene dye that is influenced by its intermolecular collisions with the surrounding polymers segments. For different polymer matrices, poly(methyl methacrylate) (PMMA), polystyrene (PS), poly(2-vinyl pyridine) (P2VP), and polycarbonate (PC), we demonstrate that I Ratio ( T ) exhibits a transition from a non-Arrhenius behavior above the glass transition temperature T g of the polymer to an Arrhenius temperature dependence with constant activation energy E below the T g of the polymer matrix, indicating perylene's sensitivity to cooperative α-relaxation dynamics of the polymer matrix. This transition in temperature dependence allows us to identify a perylene defined local T peryleneg of the surrounding polymer matrix that agrees well with the known T g values of the polymers. We define a fluorescence intensity shift factor in analogy with the Williams–Landel–Ferry (WLF) equation and use literature WLF parameters for the polymer matrix to quantify the calibration factor c f needed to convert the fluorescence intensity ratio to the effective time scale ratio described by the conventional WLF shift factor. This work opens up a new characterization method that could be used to map the local dynamical response of the glass transition in nanoscale polymer materials using appropriate covalent attachment of perylene to polymer chains. 
    more » « less