skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1804320

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Constructing bulk graphene materials with well‐reserved 2D properties is essential for device and engineering applications of atomically thick graphene. In this article, the recent progress in the fabrications and applications of sterically continuous porous graphene with designable microstructures, chemistries, and properties for energy storage and conversion are reviewed. Both template‐based and template‐free methods have been developed to synthesize the 3D continuously porous graphene, which typically has the microstructure reminiscent of pseudo‐periodic minimal surfaces. The 3D graphene can well preserve the properties of 2D graphene of being highly conductive, surface abundant, and mechanically robust, together with unique 2D electronic behaviors. Additionally, the bicontinuous porosity and large curvature offer new functionalities, such as rapid mass transport, ample open space, mechanical flexibility, and tunable electric/thermal conductivity. Particularly, the 3D curvature provides a new degree of freedom for tailoring the catalysis and transport properties of graphene. The 3D graphene with those extraordinary properties has shown great promises for a wide range of applications, especially for energy conversion and storage. This article overviews the recent advances made in addressing the challenges of developing 3D continuously porous graphene, the benefits and opportunities of the new materials for energy‐related applications, and the remaining challenges that warrant future study.

     
    more » « less
  2. Abstract

    High-entropy and medium-entropy alloys are presumed to have a configurational entropy as high as that of an ideally mixed solid solution (SS) of multiple elements in near-equal proportions. However, enthalpic interactions inevitably render such chemically disordered SSs rare and metastable, except at very high temperatures. Here we highlight the wide variety of local chemical ordering (LCO) that sets these concentrated SSs apart from traditional solvent-solute ones. Using atomistic simulations, we reveal that the LCO of the multi-principal-element NiCoCr SS changes with alloy processing conditions, producing a wide range of generalized planar fault energies. We show that the LCO heightens the ruggedness of the energy landscape and raises activation barriers governing dislocation activities. This influences the selection of dislocation pathways in slip, faulting, and twinning, and increases the lattice friction to dislocation motion via a nanoscale segment detrapping mechanism. In contrast, severe plastic deformation reduces the LCO towards random SS.

     
    more » « less
  3. Superhigh-temperature strengths are achieved in an alloy by eutectic-carbide reinforcement and multiprincipal-element mixing. 
    more » « less
  4. Mechanical properties are fundamental to structural materials, where dislocations play a decisive role in describing their mechanical behavior. Although the high-yield stresses of multiprincipal element alloys (MPEAs) have received extensive attention in the last decade, the relation between their mechanistic origins remains elusive. Our multiscale study of density functional theory, atomistic simulations, and high-resolution microscopy shows that the excellent mechanical properties of MPEAs have diverse origins. The strengthening effects through Shockley partials and stacking faults can be decoupled in MPEAs, breaking the conventional wisdom that low stacking fault energies are coupled with wide partial dislocations. This study clarifies the mechanistic origins for the strengthening effects, laying the foundation for physics-informed predictive models for materials design. 
    more » « less
  5. Abstract Glass transition is one of the unresolved critical issues in solid-state physics and materials science, during which a viscous liquid is frozen into a solid or structurally arrested state. On account of the uniform arrested mechanism, the calorimetric glass transition temperature ( T g ) always follows the same trend as the dynamical glass transition (or α -relaxation) temperature ( T α ) determined by dynamic mechanical analysis (DMA). Here, we explored the correlations between the calorimetric and dynamical glass transitions of three prototypical high-entropy metallic glasses (HEMGs) systems. We found that the HEMGs present a depressed dynamical glass transition phenomenon, i.e ., HEMGs with moderate calorimetric T g represent the highest T α and the maximum activation energy of α -relaxation. These decoupled glass transitions from thermal and mechanical measurements reveal the effect of high configurational entropy on the structure and dynamics of supercooled liquids and metallic glasses, which are associated with sluggish diffusion and decreased dynamic and spatial heterogeneities from high mixing entropy. The results have important implications in understanding the entropy effect on the structure and properties of metallic glasses for designing new materials with plenteous physical and mechanical performances. 
    more » « less