Multi-principal-element alloys (MPEAs) based on 3d-transition metals show remarkable mechanical properties. The stacking fault energy (SFE) in face-centered cubic (fcc) alloys is a critical property that controls underlying deformation mechanisms and mechanical response. Here, we present an exhaustive density-functional theory study on refractory- and copper-reinforced Cantor-based systems to ascertain the effects of refractory metal chemistry on SFE. We find that even a small percent change in refractory metal composition significantly changes SFEs, which correlates favorably with features like electronegativity variance, size effect, and heat of fusion. For fcc MPEAs, we also detail the changes in mechanical properties, such as bulk, Young’s, and shear moduli, as well as yield strength. A Labusch-type solute-solution-strengthening model was used to evaluate the temperature-dependent yield strength, which, combined with SFE, provides a design guide for high-performance alloys. We also analyzed the electronic structures of two down-selected alloys to reveal the underlying origin of optimal SFE and strength range in refractory-reinforced fcc MPEAs. These new insights on tuning SFEs and modifying composition-structure-property correlation in refractory- and copper-reinforced MPEAs by chemical disorder, provide a chemical route to tune twinning- and transformation-induced plasticity behavior.
more »
« less
Decoupling between Shockley partials and stacking faults strengthens multiprincipal element alloys
Mechanical properties are fundamental to structural materials, where dislocations play a decisive role in describing their mechanical behavior. Although the high-yield stresses of multiprincipal element alloys (MPEAs) have received extensive attention in the last decade, the relation between their mechanistic origins remains elusive. Our multiscale study of density functional theory, atomistic simulations, and high-resolution microscopy shows that the excellent mechanical properties of MPEAs have diverse origins. The strengthening effects through Shockley partials and stacking faults can be decoupled in MPEAs, breaking the conventional wisdom that low stacking fault energies are coupled with wide partial dislocations. This study clarifies the mechanistic origins for the strengthening effects, laying the foundation for physics-informed predictive models for materials design.
more »
« less
- Award ID(s):
- 1804320
- PAR ID:
- 10312956
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 51
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The emerging class of multi-principal element alloy (MPEA) processes superior mechanical properties and has great potential for applications in extreme environments. In this work, the synergic effect of the Cr content and crystallographic orientation on the deformation behaviors of single-crystal CrCoFeNi MPEAs has been investigated by atomistic simulations. We have found distinct differences in dislocation activities, deformation microstructures, and mechanical behaviors in the model MPEAs, which depend on crystallographic orientations, Cr concentration, and the number of activated slip systems. When multiple slip systems are triggered along [100] and [111] orientations, Shockley partial activation and their interaction are predominant, leading to the formation of sessile dislocations and a dense dislocation network. When only two slip systems of Shockley partials are favored along the [110] direction, the influence of Cr concentration and planner defect energies emerges. At low Cr concentration, the double planar slip of Shockley partials results in deformation-induced nanotwins. At high Cr concentration, the partial dislocations of a single slip plane become dominant, attaining the highest volume fraction of deformation-induced phase transformation. The results provide a fundamental understanding of deformation mechanisms in MPEAs, elucidating the synergic effect of crystal orientation and composition on tunning the mechanical behaviors.more » « less
-
Amorphous/crystalline high-entropy-alloy (HEA) composites show great promise as structural materials due to their exceptional mechanical properties. However, there is still a lack of understanding of the dynamic nanoindentation response of HEA composites at the atomic scale. Here, the mechanical behavior of amorphous/crystalline HEA composites under nanoindentation is investigated through a large-scale molecular dynamics simulation and a dislocation-based strength model, in terms of the indentation force, microstructural evolution, stress distribution, shear strain distribution, and surface topography. The results show that the uneven distribution of elements within the crystal leads to a strong heterogeneity of the surface tension during elastic deformation. The severe mismatch of the amorphous/crystalline interface combined with the rapid accumulation of elastic deformation energy causes a significant number of dislocation-based plastic deformation behaviors. The presence of surrounding dislocations inhibits the free slip of dislocations below the indenter, while the amorphous layer prevents the movement or disappearance of dislocations towards the substrate. A thin amorphous layer leads to great indentation force, and causes inconsistent stacking and movement patterns of surface atoms, resulting in local bulges and depressions at the macroscopic level. The increasing thickness of the amorphous layer hinders the extension of shear bands towards the lower part of the substrate. These findings shed light on the mechanical properties of amorphous/crystalline HEA composites and offer insights for the design of high-performance materials.more » « less
-
Refractory multiprincipal element alloys (MPEAs) are promising materials to meet the demands of aggressive structural applications, yet require fundamentally different avenues for accommodating plastic deformation in the body-centered cubic (bcc) variants of these alloys. We show a desirable combination of homogeneous plastic deformability and strength in the bcc MPEA MoNbTi, enabled by the rugged atomic environment through which dislocations must navigate. Our observations of dislocation motion and atomistic calculations unveil the unexpected dominance of nonscrew character dislocations and numerous slip planes for dislocation glide. This behavior lends credence to theories that explain the exceptional high temperature strength of similar alloys. Our results advance a defect-aware perspective to alloy design strategies for materials capable of performance across the temperature spectrum.more » « less
-
Twin boundary (TB) strengthening in nanotwinned metals experiences a breakdown below a critical spacing at which softening takes over. Here, we survey a range of nanotwinned materials that possess different stacking fault energies (SFEs) and understand the TB strengthening limit using atomistic simulations. Distinct from Cu and Al, the nanotwinned, ultralow SFE materials (Co, NiCoCr, and NiCoCrFeMn) intriguingly exhibit a continuous strengthening down to a twin thickness of 0.63 nm. Examining dislocation slip mode and deformation microstructure, we find the hard dislocation modes persist even when reducing the twin boundary spacing to a nanometer regime. Meanwhile, the soft dislocation mode, which causes detwinning in Cu and Al, results in phase transformation and lamellar structure formation in Co, NiCoCr, and NiCoCrFeMn. This study, providing an enhanced understanding of dislocation mechanism in nanotwinned materials, demonstrates the potential for controlling mechanical behavior and ultimate strength with broadly tunable composition and SFE, especially in multi-principal element alloys.more » « less
An official website of the United States government

