Information and material biological legacies that persist after catastrophic forest disturbance collectively constitute the ecological memory of the system and may strongly influence future stand development. Catastrophic disturbances often result in an influx of coarse woody debris (CWD), and this material legacy may provide beneficial microsites that affect successional and structural developmental pathways. We examined how microenvironmental characteristics influence the regeneration of woody plants in a subtropical woodland that experienced a large influx of CWD from a catastrophic wind disturbance. Specifically, we asked (1) what microenvironmental factors best explain woody plant density, richness, and height in the regeneration layer and (2) does woody plant density, richness, and height benefit from the large influx of CWD to a degree that competition dynamics and succession may be modified? Data were collected in a Pinus palustris woodland that had experienced an EF3 tornado and was subjected to a four-year prescribed fire rotation. We documented live woody plants <5 cm diameter at breast height, soil, and site characteristics and tested for differences in seedling and sapling density, species richness, and height in relation to CWD proximity. We used a random forest machine learning algorithm to examine the influence of microenvironmental conditions on the characteristics of woody plants in the regeneration layer. Woody plant density and species richness were not significantly different by proximity to CWD, but plants near CWD were slightly taller than plants away from CWD. The best predictors of woody plant density, richness, and height were abiotic site characteristics including slope gradient and azimuth, organic matter depth and weight, and soil water content. Results indicated that the regeneration of woody plants in this P. palustris woodland was not strongly influenced by the influx of CWD, but by other biological legacies such as existing root networks and soil characteristics. Our study highlights the need to consider ecological memory in forest management decision-making after catastrophic disturbance. Information and material legacies shape recovery patterns, but, depending on the system, some legacies will be more influential on successional and developmental pathways than others.
more »
« less
Resilience of a Fire-Maintained Pinus palustris Woodland to Catastrophic Wind Disturbance: 10 Year Results
Increased interest in ecosystem recovery and resilience has been driven by concerns over global change-induced shifts in forest disturbance regimes. In frequent-fire forests, catastrophic wind disturbances modify vegetation-fuels-fire feedbacks, and these alterations may shift species composition and stand structure to alternative states relative to pre-disturbance conditions. We established permanent inventory plots in a catastrophically wind-disturbed and fire-maintained Pinus palustris woodland in the Alabama Fall Line Hills to examine ecosystem recovery and model the successional and developmental trajectory of the stand through age 50 years. We found that sapling height was best explained by species. Species with the greatest mean heights likely utilized different regeneration mechanisms. The simulation model projected that at age 50 years, the stand would transition to be mixedwood and dominated by Quercus species, Pinus taeda, and P. palustris. The projected successional pathway is likely a function of residual stems that survived the catastrophic wind disturbance and modification of vegetation-fuels-fire feedbacks. Although silvicultural interventions will be required for this system to exhibit pre-disturbance species composition and structure, we contend that the ecosystem was still resilient to the catastrophic disturbance because similar silvicultural treatments were required to create and maintain the P. palustris woodland prior to the disturbance event.
more »
« less
- Award ID(s):
- 2015466
- PAR ID:
- 10312972
- Date Published:
- Journal Name:
- Forests
- Volume:
- 12
- Issue:
- 8
- ISSN:
- 1999-4907
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wildfire activity is increasing in boreal forests as climate warms and dries, increasing risks to rural and urban communities. In black spruce forests of Interior Alaska, fuel reduction treatments are used to create a defensible space for fire suppression and slow fire spread. These treatments introduce novel disturbance characteristics, making longer-term outcomes on ecosystem structure and wildfire risk reduction uncertain. We remeasured a network of sites where fuels were reduced through hand thinning or mechanical shearblading in Interior Alaska to assess how successional trajectories of tree dominance, understory composition, and permafrost change over ∼ 20 years after treatment. We also assessed if these fuel reduction treatments reduce modeled surface rate of fire spread (ROS), flame length, and fireline intensity relative to an untreated black spruce stand, and if surface fire behavior changes over time. In thinned areas, soil organic layer (SOL) disturbance promoted tree seedling recruitment but did not change over time. In shearbladed sites, by contrast, both conifer and broad-leaved deciduous seedling density increased over time and deciduous seedlings were 20 times more abundant than spruce. Thaw depth increased over time in both treatments and was greatest in shearbladed sites with a thin SOL. Understory composition was not altered by thinning but in shearbladed treatments shifted from forbs and horsetail to tall deciduous shrubs and grasses over time. Modeled surface fire behavior was constant in shearbladed sites. This finding is inconsistent with expert opinion, highlighting the need for additional fuels-specific data to capture the changing vegetation structure. Treatment effectiveness at reducing modeled surface ROS, flame length, and fireline intensity depended on the fuel model used for an untreated black spruce stand, pointing to uncertainties about the efficacy of these treatments at mitigating surface fire behavior. Overall, we show that fuel reduction treatments can promote low flammability, deciduous tree dominated successional trajectories, and that shearblading has strong effects on understory composition and permafrost degradation that persist for nearly two decades after disturbance. Such factors need to be considered to enhance the design, management, and predictions of fire behavior in these treatments.more » « less
-
Wildfire is a ubiquitous disturbance agent in subalpine forests in western North America. Lodgepole pine ( Pinus contorta var. latifolia), a dominant tree species in these forests, is largely resilient to high-severity fires, but this resilience may be compromised under future scenarios of altered climate and fire activity. We investigated fire occurrence and post-fire vegetation change in a lodgepole pine forest over the past 2500 years to understand ecosystem responses to variability in wildfire and climate. We reconstructed vegetation composition from pollen preserved in a sediment core from Chickaree Lake, Colorado, USA (1.5-ha lake), in Rocky Mountain National Park, and compared vegetation change to an existing fire history record. Pollen samples ( n = 52) were analyzed to characterize millennial-scale and short-term (decadal-scale) changes in vegetation associated with multiple high-severity fire events. Pollen assemblages were dominated by Pinus throughout the record, reflecting the persistence of lodgepole pine. Wildfires resulted in significant declines in Pinus pollen percentages, but pollen assemblages returned to pre-fire conditions after 18 fire events, within c.75 years. The primary broad-scale change was an increase in Picea, Artemisia, Rosaceae, and Arceuthobium pollen types, around 1155 calibrated years before present. The timing of this change is coincident with changes in regional pollen records, and a shift toward wetter winter conditions identified from regional paleoclimate records. Our results indicate the overall stability of vegetation in Rocky Mountain lodgepole pine forests during climate changes and repeated high-severity fires. Contemporary deviations from this pattern of resilience could indicate future recovery challenges in these ecosystems.more » « less
-
null (Ed.)Deep-sea hydrothermal vents are associated with seafloor tectonic and magmatic activity, and the communities living there are subject to disturbance. Eruptions can be frequent and catastrophic, raising questions about how these communities persist and maintain regional biodiversity. Prior studies of frequently disturbed vents have led to suggestions that faunal recovery can occur within 2–4 years. We use an unprecedented long-term (11-year) series of colonization data following a catastrophic 2006 seafloor eruption on the East Pacific Rise to show that faunal successional changes continue beyond a decade following the disturbance. Species composition at nine months post-eruption was conspicuously different than the pre-eruption ‘baseline' state, which had been characterized in 1998 (85 months after disturbance by the previous 1991 eruption). By 96 months post-eruption, species composition was approaching the pre-eruption state, but continued to change up through to the end of our measurements at 135 months, indicating that the ‘baseline' state was not a climax community. The strong variation observed in species composition across environmental gradients and successional stages highlights the importance of long-term, distributed sampling in order to understand the consequences of disturbance for maintenance of a diverse regional species pool. This perspective is critical for characterizing the resilience of vent species to both natural disturbance and human impacts such as deep-sea mining.more » « less
-
Building resilience to climate change in the Afrotropics hinges on accurately predicting the style and tempo of ecosystem responses. Paleoecological records offer valuable insights into vegetation dynamics, yet high-resolution data sets remain scarce in Africa. Here, we present a new radiocarbon-dated sediment core from Lake Tanganyika, capturing terrestrial ecosystem responses to hydroclimate variability and fire activity during the Common Era. Phytolith and macrocharcoal records reveal oscillations between grasslands and woodlands in the Zambezian miombo region, transitioning from “stable” to “unstable” states depending on fire disturbance levels. The expansion of grasslands was facilitated by reduced precipitation, increased fire activity, and ecosystem interactions. Our data sets provide new constraints regarding the timing and landscape responses within the Lake Tanganyika watershed to global hydroclimate changes, including the relatively dry Medieval climate anomaly (ca. 1000−1250 CE) and the two phases of the Little Ice Age. Cold and wet conditions, which favored tree encroachment, prevailed during the “early” Little Ice Age (ca. 1250−1530 CE), whereas drier conditions coupled with increased fire activity during the “main” Little Ice Age (ca. 1530−1850 CE) promoted the expansion of open grasslands. Significant changes in grassland-woodland communities were driven and modulated by hydroclimate and rapid ecosystem feedbacks. Fire activity served as both a disruptive force, facilitating the opening of landscapes and restricting the encroachment of trees, and a steadying control that promoted a grassland “stable state” in the tropical savannas surrounding Lake Tanganyika. Understanding shifting vegetation patterns throughout the Common Era offers valuable insights for developing biodiversity conservation strategies, sustainable land-use practices, and the maintenance of ecosystem services provided by miombo woodlands for millions of rural poor in the Lake Tanganyika basin.more » « less
An official website of the United States government

