 Award ID(s):
 1828315
 Publication Date:
 NSFPAR ID:
 10313044
 Journal Name:
 Monthly Notices of the Royal Astronomical Society
 Volume:
 509
 Issue:
 2
 ISSN:
 00358711
 Sponsoring Org:
 National Science Foundation
More Like this

ABSTRACT The canonical Lambda cold dark matter (ΛCDM) cosmological model makes precise predictions for the clustering and lensing properties of galaxies. It has been shown that the lensing amplitude of galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) is lower than expected given their clustering properties. We present new measurements and modelling of galaxies in the BOSS LOWZ sample. We focus on the radial and stellar mass dependence of the lensing amplitude mismatch. We find an amplitude mismatch of around $35{{\ \rm per\ cent}}$ when assuming ΛCDM with Planck Cosmological Microwave Background (CMB) constraints. This offset is independent of halo mass and radial scale in the range Mhalo ∼ 1013.3−1013.9h−1 M⊙ and $r=0.1\!\!60 \, h^{1} \mathrm{Mpc}$ ($k \approx 0.05\!\!20 \, h \, {\rm Mpc}^{1}$). The observation that the offset is both mass and scale independent places important constraints on the degree to which astrophysical processes (baryonic effects, assembly bias) can fully explain the effect. This scale independence also suggests that the ‘lensing is low’ effect on small and large radial scales probably have the same physical origin. Resolutions based on new physics require a nearly uniform suppression, relative to ΛCDM predictions, of the amplitude of matter fluctuations on these scales.more »

ABSTRACT We measure the smallscale clustering of the Data Release 16 extended Baryon Oscillation Spectroscopic Survey Luminous Red Galaxy sample, corrected for fibrecollisions using Pairwise Inverse Probability weights, which give unbiased clustering measurements on all scales. We fit to the monopole and quadrupole moments and to the projected correlation function over the separation range $760\, h^{1}{\rm Mpc}$ with a model based on the aemulus cosmological emulator to measure the growth rate of cosmic structure, parametrized by fσ8. We obtain a measurement of fσ8(z = 0.737) = 0.408 ± 0.038, which is 1.4σ lower than the value expected from 2018 Planck data for a flat ΛCDM model, and is more consistent with recent weaklensing measurements. The level of precision achieved is 1.7 times better than more standard measurements made using only the largescale modes of the same sample. We also fit to the data using the full range of scales $0.1\text{}60\, h^{1}{\rm Mpc}$ modelled by the aemulus cosmological emulator and find a 4.5σ tension in the amplitude of the halo velocity field with the Planck + ΛCDM model, driven by a mismatch on the nonlinear scales. This may not be cosmological in origin, and could be due to a breakdown in the Halo Occupation Distribution model used inmore »

Abstract We use luminous red galaxies selected from the imaging surveys that are being used for targeting by the Dark Energy Spectroscopic Instrument (DESI) in combination with CMB lensing maps from the Planck collaboration to probe the amplitude of largescale structure over 0.4 ≤ z ≤ 1. Our galaxy sample, with an angular number density of approximately 500 deg 2 over 18,000 sq.deg., is divided into 4 tomographic bins by photometric redshift and the redshift distributions are calibrated using spectroscopy from DESI. We fit the galaxy autospectra and galaxyconvergence crossspectra using models based on cosmological perturbation theory, restricting to large scales that are expected to be well described by such models. Within the context of ΛCDM, combining all 4 samples and using priors on the background cosmology from supernova and baryon acoustic oscillation measurements, we find S 8 = σ 8 (Ω m /0.3) 0.5 = 0.73 ± 0.03. This result is lower than the prediction of the ΛCDM model conditioned on the Planck data. Our data prefer a slower growth of structure at low redshift than the model predictions, though at only modest significance.

ABSTRACT Cold Dark Matter with cosmological constant (ΛCDM) cosmological models with early dark energy (EDE) have been proposed to resolve tensions between the Hubble constant $H_0=100\, h$ km ṡ−1Ṁpc−1 measured locally, giving h ≈ 0.73, and H0 deduced from Planck cosmic microwave background (CMB) and other earlyUniverse measurements plus ΛCDM, giving h ≈ 0.67. EDE models do this by adding a scalar field that temporarily adds dark energy equal to about 10 per cent of the cosmological energy density at the end of the radiationdominated era at redshift z ∼ 3500. Here, we compare linear and nonlinear predictions of a Plancknormalized ΛCDM model including EDE giving h = 0.728 with those of standard Plancknormalized ΛCDM with h = 0.678. We find that nonlinear evolution reduces the differences between power spectra of fluctuations at low redshifts. As a result, at z = 0 the halo mass functions on galactic scales are nearly the same, with differences only 1–2 per cent. However, the differences dramatically increase at high redshifts. The EDE model predicts 50 per cent more massive clusters at z = 1 and twice more galaxymass haloes at z = 4. Even greater increases in abundances of galaxymass haloes at higher redshifts may make it easier to reionize the universe with EDE. Predicted galaxymore »

Abstract A number of recent, lowredshift, lensing measurements hint at a universe in which the amplitude of lensing is lower than that predicted from the ΛCDM model fit to the data of the Planck CMB mission. Here we use the auto and crosscorrelation signal of unWISE galaxies and Planck CMB lensing maps to infer cosmological parameters at low redshift. In particular, we consider three unWISE samples (denoted as "blue", "green" and "red") at median redshifts z ∼ 0.6, 1.1 and 1.5, which fully cover the Dark Energy dominated era. Our crosscorrelation measurements, with combined significance S / N ∼ 80, are used to infer the amplitude of lowredshift fluctuations, σ 8 ; the fraction of matter in the Universe, Ω m ; and the combination S 8 ≡ σ 8 (Ω m /0.3) 0.5 to which these lowredshift lensing measurements are most sensitive. The combination of blue, green and red samples gives a value S m = 0.784 ± 0.015, that is fully consistent with other lowredshift lensing measurements and in 2.4σ tension with the CMB predictions from Planck. This is noteworthy, because CMB lensing probes the same physics as previous galaxy lensing measurements, but with very different systematics, thus providing an excellent complement to previous measurements.