skip to main content


Title: Chern-Weil global symmetries and how quantum gravity avoids them
A bstract We draw attention to a class of generalized global symmetries, which we call “Chern-Weil global symmetries,” that arise ubiquitously in gauge theories. The Noether currents of these Chern-Weil global symmetries are given by wedge products of gauge field strengths, such as F 2 ∧ H 3 and tr( $$ {F}_2^2 $$ F 2 2 ), and their conservation follows from Bianchi identities. As a result, they are not easy to break. However, it is widely believed that exact global symmetries are not allowed in a consistent theory of quantum gravity. As a result, any Chern-Weil global symmetry in a low-energy effective field theory must be either broken or gauged when the theory is coupled to gravity. In this paper, we explore the processes by which Chern-Weil symmetries may be broken or gauged in effective field theory and string theory. We will see that many familiar phenomena in string theory, such as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil symmetries in quantum gravity, suggesting that they might be general features of quantum gravity. We further discuss implications of breaking and gauging Chern-Weil symmetries for particle phenomenology and for boundary CFTs of AdS bulk theories. Chern-Weil global symmetries thus offer a unified framework for understanding many familiar aspects of quantum field theory and quantum gravity.  more » « less
Award ID(s):
1911298 1914934
PAR ID:
10313111
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
11
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The emerging study of fractons, a new type of quasi‐particle with restricted mobility, has motivated the construction of several classes of interesting continuum quantum field theories with novel properties. One such class consists offoliated field theorieswhich, roughly, are built by coupling together fields supported on the leaves of foliations of spacetime. Another approach, which we refer to asexotic field theory, focuses on constructing Lagrangians consistent with special symmetries (like subsystem symmetries) that are adjacent to fracton physics. A third framework is that ofinfinite‐component Chern‐Simons theories, which attempts to generalize the role of conventional Chern‐Simons theory in describing (2+1)D Abelian topological order to fractonic order in (3+1)D. The study of these theories is ongoing, and many of their properties remain to be understood. Historically, it has been fruitful to study QFTs by embedding them into string theory. One way this can be done is via D‐branes, extended objects whose dynamics can, at low energies, be described in terms of conventional quantum field theory. QFTs that can be realized in this way can then be analyzed using the rich mathematical and physical structure of string theory. In this paper, we show that foliated field theories, exotic field theories, and infinite‐component Chern‐Simons theories can all be realized on the world‐volumes of branes. We hope that these constructions will ultimately yield valuable insights into the physics of these interesting field theories.

     
    more » « less
  2. A bstract We analyze topological mass terms of BF type arising in supersymmetric M-theory compactifications to AdS 5 . These describe spontaneously broken higher-form gauge symmetries in the bulk. Different choices of boundary conditions for the BF terms yield dual field theories with distinct global discrete symmetries. We discuss in detail these symmetries and their ’t Hooft anomalies for 4d $$ \mathcal{N} $$ N = 1 SCFTs arising from M5-branes wrapped on a Riemann surface without punctures, including theories from M5-branes at a ℤ 2 orbifold singularity. The anomaly polynomial is computed via inflow and contains background fields for discrete global 0-, 1-, and 2-form symmetries and continuous 0-form symmetries, as well as axionic background fields. The latter are properly interpreted in the context of anomalies in the space of coupling constants. 
    more » « less
  3. A bstract We include in F-theory, through open Type I F-theory branes (F-branes), string theories with N = 1 supersymmetry, both Type I and heterotic. Type I branes are distinguished from Type II by worldvolume parity projection. The same open Type I branes describe both open Type I superstrings and closed heterotic upon different sectionings from F-branes to worldsheets, while closed Type I superstrings arise from closed Type I branes. (Type II superstrings come from closed Type II branes, as described previously.) F-theory manifests the exceptional-group U-duality symmetry, with all massless bosonic fields in a single gauge coset. This coset branches to the usual bosonic supergravity fields upon sectioning. We examine in detail the simple case of D = 3 F-theory: parity projection reduces the Type II coset SL(5)/SO(3,2) to the Type I coset SO(3,3)/SO(2,1) 2 = SL(4)/SO(2,2). 
    more » « less
  4. On the basis of a number of Swampland conditions, we argue that the Hilbert space of baby universe states must be one-dimensional in a consistent theory of quantum gravity. This scenario may be interpreted as a type of “Gauss’s law for entropy” in quantum gravity, and provides a clean synthesis of the tension between Euclidean wormholes and a standard interpretation of the holographic dictionary, with no need for an ensemble. Our perspective relies crucially on the recently-proposed potential for quantum-mechanical gauge redundancies between states of the universe with different topologies. We further comment on the possible exceptions in d ≤ 3 for this hypothesis and the role of an ensemble in holographic theories in the context of theories of quantum gravity in d = 2 (such as JT gravity and possible cousins in d = 3), which we argue are incomplete physical theories that should be viewed as branes in a higher dimensional theory of quantum gravity for which an ensemble plays no role. 
    more » « less
  5. A bstract Recently, the first instance of a model of D-branes at Calabi-Yau singularities where supersymmetry is broken dynamically into stable vacua has been proposed. This construction was based on a system of N regular and M = 1 fractional branes placed at the tip of the so-called (orientifolded) Octagon singularity. In this paper we show that this model admits a large M generalization, having the same low energy effective dynamics. This opens up the possibility that the effect on geometry is smooth, and amenable to describing the gauge theory all along the RG flow, including the deep IR, in terms of a weakly coupled gravity dual background. The relevance of this result in the wider context of the string landscape and the Swampland program is also discussed. 
    more » « less