skip to main content


Title: Flow substrate interactions in aggrading and degrading submarine channels
ABSTRACT Connecting real-time measurements of current–bed interactions to the temporal evolution of submarine channels can be extremely challenging in natural settings. We present a suite of physical experiments that offer insight into the spectrum of interactions between turbidity currents and their channels, from i) detachment-limited erosion to ii) transport-limited erosion to iii) pure deposition. In all three cases channel sinuosity influenced patterns of erosion and deposition; the outsides of bends displayed the highest erosion rates in the first two cases but showed the highest deposition rates in the third. We connect the evolution of these channels to the turbulence of the near-bed boundary layer. In the erosional experiments the beds of both channels roughened through time, developing erosional bedforms or trains of ripples. Reynolds estimates of boundary-layer roughness indicate that, in both erosional cases, the near-bed boundary layer roughened from smooth or transitionally rough to rough, whereas the depositional channel appears to have remained consistently smooth. Our results suggest that, in the absence of any changes from upstream, erosion in submarine channels is a self-reinforcing mechanism whereby developing bed roughness increases turbulence at the boundary layer, thereby inhibiting deposition, promoting sediment entrainment, and enhancing channel relief; deposition occurs in submarine channels when the boundary layer remains smooth, promoting aggradation and loss of channel relief.  more » « less
Award ID(s):
2029803
NSF-PAR ID:
10313198
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Sedimentary Research
Volume:
90
Issue:
6
ISSN:
1527-1404
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The present study uses eddy‐resolving numerical simulations to investigate how bed roughness affects flow and turbulence structure around an isolated, partially‐buried mussel (Unio elongatulus) aligned with the incoming flow. The rough‐bed simulations resolve the flow past the exposed part of a gravel bed, whose surface is obtained from a laboratory experiment that also provides some additional data for validation of the numerical model. Results are also discussed for the limiting case of a horizontal smooth bed. Additionally, the effects of varying the level of burial of the mussel inside the substrate and the discharge through the two mussel siphons are investigated via a set of simulations in which the ratio between the median diameter of the (gravel) particles forming the rough bed,d50, and the height of the exposed part of the mussel,h, varies between 0.10 and 0.22. The increase of the bed roughness is associated with a strong amplification of the turbulence kinetic energy in the near‐wake region. Increasing the bed roughness and/or reducinghintensifies the interactions of the eddies generated by the bed particles with the base and tip vortices induced by the active filtering and by the mussel shell, respectively, which, in turn, induces a more rapid dissipation of these vortices. Increasing the bed roughness also reduces the strength of the main downwelling flow region forming in the wake. The strong downwelling near the symmetry plane is the main reason why the symmetric wake shedding mode dominates in the smooth bed simulations with negligible active filtering. By contrast, the anti‐symmetric wake shedding mode dominates in the simulations conduced with a high value of the bed roughness. The mean streamwise drag force coefficient for the emerged part of the shell and the dilution of the excurrent siphon jet increase with increasing bed roughness.

     
    more » « less
  2. This research studied the effect of channel roughness on micro-droplet distributions in internal minimum quantity lubrication for effective machining. Mixtures of different oils and air were flown though internal channels with simulated different roughness: as fabricated, partially threaded, and fully threaded. The airborne droplets were collected, analyzed, and compared with simulated results by computational fluid dynamics. For low-viscous lubricant, the rough channel surface helped to break large droplets in the boundary layer into smaller droplets and reintroduce them into the main downstream flow. The opposite trend was found for the higher viscous lubricant. The study also performed chemical etching to roughen selected surfaces of carbide cutting tools. The synergy of hand and ultrasonic agitation successfully roughened a carbide surface within twelve minutes. Scanning electron microscopy examination showed deep etching that removed all grinding marks on a WC–Co cutting tool surface. 
    more » « less
  3. Abstract

    Permafrost thaw is hypothesized to increase riverbank erosion rates, which threatens Arctic communities and infrastructure. However, existing erosion models have not been tested against controlled flume experiments with open‐channel flow past an erodible, hydraulically rough permafrost bank. We conducted temperature‐controlled flume experiments where turbulent water eroded laterally into riverbanks consisting of sand and pore ice. The experiments were designed to produce ablation‐limited erosion such that any thawed sediment was quickly transported away from the bank. Bank erosion rates increased linearly with water temperature, decreased with pore ice content, and were insensitive to changes in bank temperature, consistent with theory. However, erosion rates were approximately a factor of three greater than expected. The heightened erosion rates were due to a greater coefficient of heat transfer from the turbulent water to the permafrost bank caused by bank grain roughness. A revised ablation‐limited bank erosion model with a heat transfer coefficient that includes bank roughness matched our experimental results well. Results indicate that bank erosion along Arctic rivers can accelerate under scenarios of warming river water temperatures for cases where the cadence of bank erosion is set by pore‐ice melting rather than sediment entrainment.

     
    more » « less
  4. null (Ed.)
    Abstract Mangrove swamps are extremely productive ecosystems providing many ecological services in coastal regions. The hydrodynamic interactions of mangrove roots and water flow have been proposed as a key element to mitigate erosion. Several studies reveal that precise prediction of the morphological evolution of coastal areas, in the face of global warming and the consequent sea-level rise, requires an understanding of interactions between root porosity (the fraction of the volume of void space over the total volume), water flows, and sediment transport. Water flows around the mangrove prop roots create a complex energetic process that mixes up sediments and generates a depositional region posterior to the roots. In this work, we investigated the boundary layer behind permeable arrays of cylinders (patch) that represent the mangrove roots to explore the impact of patch porosity on the onset of sediment transport. The flow measurements were performed in a vertical plane along the water depth downstream of the mangrove root models. A high-resolution Particle Image Velocimetry (PIV) was used in a flume to observe the impact of porosity on the mean flow, velocity derivatives, skin friction coefficient, and production of turbulent kinetic energy for Reynolds number of 2500 (based on patch diameter length-scale). Here, we proposed a predictive model for critical velocity for incipient motion that takes into account the mangrove roots porosity and the near-bed turbulence effect. It is found that the patch with the $$\phi =47\%$$ ϕ = 47 % porosity, has the maximum critical velocity over which the sediment transport initiates. We found the optimum porosity has the minimum sediment erosion and creates negative vorticity sources near the bed that increases the critical velocity. This signifies an optimum porosity for the onset of sediment transport consistent with the porosity of mangroves in nature. The phenomenological model is elucidated based on an analysis of the vorticity evolution equation for viscous incompressible flows. For the optimum porous patch, a sink of vorticity was formed which yielded to lower the near-bed turbulence and vorticity. The minimum velocity fluctuations were sufficient to initiate the boundary layer transition, however, the viscous dissipation dominated the turbulence production to obstruct the sediment transport. This work identified the pivotal role of mangrove root porosity in sediment transport in terms of velocity and its derivatives in wall-bounded flows. Our work also provides insight into the sediment transport and erosion processes that govern the evolution of the shapes of shorelines. 
    more » « less
  5. Bedrock topography is a key boundary condition for ice sheet modeling, and determining changes in subglacial topography through time can provide insight into the timing of ice sheet development, the magnitude of glacial erosion, and the co-development of glaciers and glacial topography. West Antarctica hosts an unusually high geothermal gradient supported by hot, low-viscosity mantle which likely enhanced the lithospheric response to West Antarctic Ice Sheet (WAIS) cycles of growth and increased the sensitivity of thermochronometers to landscape evolution on million-year timescales. Thus, a valuable record of glacial landscape change might be recovered from apatite fission track [AFT 80-130°C range] and (U-Th)/He [AHe; 50-90°C] dating, provided that landscape evolution can be distinguished from tectonic signals, including the effects of faults. This study utilizes AFT-AHe thermochronology and thermo-kinematic Pecube modeling to investigate interactions between the hot geotherm, glacial erosion, and inferred crustal structures in the Ford Ranges and the DeVicq Glacier trough in western and central Marie Byrd Land (MBL), respectively. The Ford Ranges host glacial troughs (up to 3km relief) dissecting a low-relief erosional surface. Previous work suggests a majority of bedrock exhumation and cooling occurred at/by 80 Ma. However, new data hint at renewed exhumation linked to glacial incision since WAIS formation at 34 or 20 Ma. Prior (U-Th)/He zircon dates from exposures of crystalline bedrock span 90 – 67 Ma. New AHe bedrock dates are 41 to 26 Ma, while two glacial erratics (presumed to be eroded from walls or floor of glacial troughs) yielded AHe dates of 37 Ma and 16 Ma. Initial modeling results suggest a tectonic boundary between the Ford Ranges and Edward VII Peninsula separating regions with distinct exhumation histories. The boundary may cause differential WAIS incision at 34 or 20 Ma, a possibility being investigated with new models. The DeVicq Glacier trough (>3.5km relief) coincides with a prominent crustal lineament but lacks temperature-time information compared to other regions. The crustal structure may have accommodated motion between elevated central MBL and the subdued crust of the Ford Ranges. Here, owing to the lack of onshore non-volcanic bedrock exposure, we have employed AHe and AFT dating of glacial sediment marine core samples offshore of the DeVicq Glacier to investigate the timing and rates of exhumation of the bedrock carved by the DeVicq trough, with initial results revealing detrital AHe ages as young as 24 Ma. Our new Pecube models test a series of thermal, tectonic, and landscape evolution scenarios against a suite of thermochronologic data, allowing us to assess the timing of glacial incision and WAIS initiation in the Ford Ranges, and to seek evidence of an inferred tectonic boundary at DeVicq Trough. Modeling efforts will be aided by new AHe and AFT analyses from ongoing work. These models combine topographic, tectonic, thermal, and key thermochronologic datasets to produce new insight into the unique cryosphere-lithosphere interactions affecting landscape change in West Antarctica. 
    more » « less