skip to main content

Title: Evaluating impacts of coastal flooding on the transportation system using an activity-based travel demand model: a case study in Miami-Dade County, FL
Recent climatic disasters have shown the vulnerability of transportation infrastructures against natural hazards. To understand the risk of coastal hazards on urban travel activities, this study presents an activity-based modeling approach to evaluate the impacts of storm surge on the transportation network under sea-level rise in Miami-Dade County, FL. A Markov-Chain Monte Carlo (MCMC) based algorithm is applied to generate population attributes and travel diaries in the model simulation. Flooding scenarios in 2045 are developed based on different adaptation standards under the 100-year storm surge and population projections are from the land-use conflict identification strategy (LUCIS) model. Our analysis indicates that about 29.3% of the transportation infrastructure, including areas of the US No. 1 highway, roadways in the south and southwest of the county, and bridges connecting Miami Beach area, will be damaged under the storm surge when a low-level adaptation standard is chosen. However, the high-level adaptation standard will reduce the vulnerable infrastructures to 12.4%. Furthermore, the total increased travel time of the low-level adaptation standard could be as high as twice of that in the high-level adaptation standard during peak morning hours. Our model results also reveal that the average increased travel time due to future storm surge more » damage ranges between 14.2 and 62.8 min per trip. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Low-lying coastal cities across the world are vulnerable to the combined impact of rainfall and storm tide. However, existing approaches lack the ability to model the combined effect of these flood mechanisms, especially under climate change and sea level rise (SLR). Thus, to increase flood resilience of coastal cities, modeling techniques to improve the understanding and prediction of the combined effect of these flood hazards are critical. To address this need, this study presents a modeling system for assessing the combined flood impact on coastal cities under selected future climate scenarios that leverages ocean modeling with land surface modeling capable of resolving urban drainage infrastructure within the city. The modeling approach is demonstrated in quantifying the impact of possible future climate scenarios on transportation infrastructure within Norfolk, Virginia, USA. A series of combined storm events are modeled for current (2020) and projected future (2070) climate scenarios. The results show that pluvial flooding causes a larger interruption to the transportation network compared to tidal flooding under current climate conditions. By 2070, however, tidal flooding will be the dominant flooding mechanism with even nuisance flooding expected to happen daily due to SLR. In 2070, nuisance flooding is expected to cause a 4.6%more »total link close time (TLC), which is more than two times that of a 50-year storm surge (1.8% TLC) in 2020. The coupled flood model was compared with a widely used but physically simplistic bathtub method to assess the difference resulting from the more complex modeling presented in this study. The results show that the bathtub method overestimated the flooded area near the shoreline by 9.5% and 3.1% for a 10-year storm surge event in 2020 and 2070, respectively, but underestimated the flooded area in the inland region by 9.0% and 4.0% for the same events. The findings demonstrate the benefit of sophisticated modeling methods compared to more simplistic bathtub approaches, in climate adaptive planning and policy in coastal communities.« less
  2. It is generally acknowledged that interdependent critical infrastructure in coastal urban areas is constantly threatened by storm-induced flooding. Due to changing climate effects, such as sea level rise (SLR), the occurrence of catastrophic events will be more frequent and may trigger an increased likelihood of severe hazards. Planning a protective measure or mitigation strategy is a complex problem given the constraints that it must fit within a prescribed and limited fiscal budget and be beneficial to the community it protects both socially and economically. This article proposes a methodology for optimizing protective measures and mitigation strategies for interdependent infrastructures subjected to storm-induced flooding and climate change impacts such as SLR. Optimality is defined in this methodology as a maximum reduction in overall expected losses within a prescribed budget (compared to the expected losses in the case of doing nothing for protection/mitigation). Protective measures can include seawalls, barriers, artificial dunes, restoration of wetlands, raising individual buildings, sealing parts of the infrastructure, strategic retreat, insurance, and many more. The optimal protective strategy can be a combination of several protective measures implemented over space and time. The optimization process starts with parameterizing the protective measures. Storm-induced flooding and SLR, and their corresponding consequences,more »are estimated using a GIS-based subdivision-redistribution methodology (GISSR) developed by the authors for finding a rough solution in the first brute-force iterations of the optimization loop. A storm surge computational model called GeoClaw is subsequently used to simulate ensembles of synthetic storms in order to fine-tune and achieve the optimal solution. Damage loss, including economic impacts, is quantified based on calculated flood estimates. The suitability of the potential optimal solution is examined and assessed with input from stakeholders' interviews. It should be mentioned that the results and conclusions provided in this work depend on the assumptions made about future sea level rise (SLR). The authors acknowledge that there are other, more severe predictions for sea level rise (SLR), than the one used in this paper.« less
  3. Storm surge and evacuation traffic under the observed track of Hurricane Michael (2018) showed clear accessibility and evacuation challenges for Panama City, Florida although the city was not hit directly. Since a possible Hurricane Michael track within National Hurricane Center (NHC)'s forecasted hurricane cone was Panama City, this paper tries to answer the following questions: What if Hurricane Michael hit Panama City directly? How would the special needs populations and their accessibility to Special Needs Shelters (SpNS) be impacted, and what could have been done to alleviate this impact? A previously validated storm surge model was used to predict storm surge inundations under this different hurricane track. Based on the impact of these coastal inundations, a GIS-based optimization methodology was developed to evaluate the accessibility and siting of special needs shelters. Results indicate that if Hurricane Michael had shifted to Panama City in 2018, most of the coastal region of Panama City would have been inundated, compelling residents to evacuate. The possible landfall of Michael in this simulation would also lead to a maximum storm surge of 5 to 6 m on the coast, which is above FEMA's 100-year flood elevation. In addition, the only evacuation route out of Panamamore »City area, when the bridges with their access roads were flooded, was US 231. This would have been life-threatening since there is only one SpNS in the north of the city accessible by this roadway. The proposed analysis studies the accessibility of this SpNS shelter and provides a reasonable approach for SpNS shelter siting or repurposing regular shelters for this purpose based on the hypothesized travel time most likely to be experienced on roadway networks based on the impact of Hurricane Michael. Emergency plans can be updated by the results of this optimization model, which can locate additional sites or shelter locations while minimizing the travel costs and integrating the impact of storm surge modeling and transportation accessibility analysis.« less
  4. Abstract Extreme sea levels (ESLs) due to typhoon-induced storm surge threaten the societal security of densely populated coastal China. Uncertainty in extreme value analysis (EVA) for ESL estimation has large implications for coastal communities’ adaptation to natural hazards. Here we evaluate uncertainties in ESL estimation and relevant driving factors based on hourly observations from 13 tide gauge stations and a complementary dataset derived from a hydrodynamic model. Results indicate significant uncertainties in ESL estimations stemming from using different EVA methods, which then propagate to the inundation assessment. Amplification factors due to sea-level rise (SLR) are highly sensitive to local relative SLR and the shape of the exceedance probability curve, which in turn depends on the selected EVA method. The hydrodynamic model hindcast indicates that high ESLs mainly occurred in eastern coastal China due to typhoon-induced storm surge. Larger uncertainties in the modelled ESLs are found for the coasts of the Yangtze River Delta, and particularly in the river mouth region. Future research and adaptation planning should prioritize these regions given expected future rising sea level, compound flood events, and human-induced factors (e.g. subsidence). This study provides theoretical and practical references for adaptation to ESL-related hazards along coastal China, with implicationsmore »for coastal regions worldwide.« less
  5. This article deals with household-level flood risk mitigation. We present an agent-based modeling framework to simulate the mechanism of natural hazard and human interactions, to allow evaluation of community flood risk, and to predict various adaptation outcomes. The framework considers each household as an autonomous, yet socially connected, agent. A Beta-Bernoulli Bayesian learning model is first applied to measure changes of agents' risk perceptions in response to stochastic storm surges. Then the risk appraisal behaviors of agents, as a function of willingness-to-pay for flood insurance, are measured. Using Miami-Dade County, Florida as a case study, we simulated four scenarios to evaluate the outcomes of alternative adaptation strategies. Results show that community damage decreases significantly after a few years when agents become cognizant of flood risks. Compared to insurance policies with pre-Flood Insurance Rate Maps subsidies, risk-based insurance policies are more effective in promoting community resilience, but it will decrease motivations to purchase flood insurance, especially for households outside of high-risk areas. We evaluated vital model parameters using a local sensitivity analysis. Simulation results demonstrate the importance of an integrated adaptation strategy in community flood risk management.