Marine structures placed in the shallower seabed can experience pore water drainages with more complexity than those in onshore environments, particularly in coarse-grained soils where drainage is neither purely “drained” nor “undrained,” but Partially Drained (PD). However, current laboratory approaches for characterizing soil behavior are limited to modeling drainage conditions as fully drained or undrained. This paper presents results from a series of confined monotonic saturated simple shear tests under various drainage conditions on reconstituted medium dense to dense Monterey sand specimens to fill this knowledge gap. Although others have performed limited PD element-level tests under triaxial conditions, no documentation exists for tests using a simple monotonic shear configuration. To achieve PD, a special filter was fabricated and connected between the bottom of the specimen and the backpressure controller. The hydraulic filter comprises a series of needle valves to provide various hydraulic impedances. All simple shear tests in this paper were backpressure-saturated. Two different degrees of PD were considered and compared with fully drained and undrained conditions. Results show that the excess pore water pressure generation and measured volumetric changes in the PD tests are bounded between those measured from fully drained and undrained, proving the PD filter provided the hydraulic resistance to achieve PD condition.
more »
« less
Uplift capacity of suction caissons in sand for general conditions of drainage
Suction caissons have emerged as a viable solution for the foundations of offshore wind turbines, which are gaining momentum worldwide as an alternate energy source. When used in a multi-bucket jacket system, the system capacity is often governed by the uplift capacity of the windward bucket foundation. Seabed conditions at offshore windfarm sites often comprise dense sand where the soil response may be drained, partially drained or undrained depending on the loading regime, the foundation dimensions and the soil conditions. Given the large difference in uplift capacity of caissons for these different drainage conditions, predicting the behavior of a suction caisson under a range of drainage conditions becomes a paramount concern. Consequently, this paper presents the findings of a coupled finite element investigation of the monotonic uplift response of the windward caisson of a multi-bucket jacket system in a typical dense silica sand for a range of drainage conditions. The study adopts a Hypoplastic soil constitutive model capable of simulating the stress-strain-strength behavior of dense sand. This choice is justified by conducting a comparative study with other soil models – namely the Mohr Coulomb and bounding surface sand models – to determine the most efficient soil failure model to capture the complex undrained behavior of dense sand. The numerical predictions made in this study are verified by recreating the test conditions adopted in centrifuge tests previously conducted at the University of Western Australia, and demonstrating that the capacity from numerical analysis is consistent with the test results. The Hypoplastic soil constitutive model also provides an efficient method to produce accurate load capacity transition curves from an undrained to a drained soil state.
more »
« less
- Award ID(s):
- 1936901
- PAR ID:
- 10313324
- Date Published:
- Journal Name:
- ASME 2021 40th International Conference on Ocean, Offshore, and Arctic Engineering
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Calibration and validation of constitutive models and numerical modeling techniques used in analysis of soil liquefaction and its effects are often based on extensive comparisons with the results of element tests and centrifuge experiments. While good quality experimental data are available to understand and quantify the stress-strain-strength response of liquefiable soils in monotonic and cyclic drained/undrained element (triaxial and direct simple shear) tests, the results of these experiments are often less repeatable when the soil approaches liquefaction state and relatively large deviatoric strains suddenly develop within a few cycles of loading. The main source of these less repeatable patterns of soil behavior appears to be instability rather than the attainment of a state of material failure. The goal of this paper is to investigate the role of instability on the stress-strain response of liquefiable soils by using a critical state sand plasticity model that is enriched with an internal length scale representing the potential shear bands that may develop during monotonic or cyclic loading conditions. Through a series of numerical simulations, it is shown that the global stress-strain response measured in the element tests is a good approximation of the soil constitutive response before an unstable condition such as shear banding or liquefaction develops in the soil specimen.more » « less
-
Summary Geomaterials such as sand and clay are highly heterogeneous multiphase materials. Nonlocality (or a characteristic length scale) in modeling geomaterials based on the continuum theory can be associated with several factors, for instance, the physical interactions of material points within finite distance, the homogenization or smoothing process of material heterogeneity, and the particle or problem size‐dependent mechanical behavior (eg, the thickness of shear bands) of geomaterials. In this article, we formulate a nonlocal elastoplastic constitutive model for geomaterials by adapting a local elastoplastic model for geomaterials at a constant suction through the constitutive correspondence principle of the state‐based peridynamics theory. We numerically implement this nonlocal constitutive model via the classical return‐mapping algorithm of computational plasticity. We first conduct a one‐dimensional compression test of a soil sample at a constant suction through the numerical model with three different values of the nonlocal variable (horizon)δ. We then present a strain localization analysis of a soil sample under the constant suction and plane strain conditions with different nonlocal variables. The numerical results show that the proposed nonlocal model can be used to simulate the inception and propagation of shear banding as well as to capture the thickness of shear bands in geomaterials at a constant suction.more » « less
-
ABSTRACT This study investigates linkages between volume change, pore fluid drainage, shear wave velocity, and temperature of soft clays using a thermal triaxial cell equipped with bender elements, a measurement approach that has not been explored widely in past thermo-mechanical studies. Two kaolinite specimens were consolidated mechanically to a normally consolidated state and then subjected to drained and undrained heating-cooling cycles, respectively. After cooling, the specimens were subjected to further mechanical consolidation to evaluate changes in apparent preconsolidation stress. Both specimens showed net contractive thermal strains after a heating-cooling cycle and overconsolidated behavior during mechanical compression immediately after cooling. The shear wave velocity increased during drained heating, but negligible changes were observed during drained cooling, indicating permanent hardening because of thermal consolidation during the heating-cooling cycle. The shear wave velocity decreased during undrained heating because of a reduction in effective stress associated with thermal pressurization of the pore fluid but subsequently increased when drainage was permitted at elevated temperature. The shear wave velocity increased slightly during undrained cooling but decreased when drainage was permitted at room temperature. Net increases in small-strain shear modulus of 17 and 11 % after heating-cooling cycles under drained and undrained (with drainage after reaching stable temperatures) conditions, respectively, provide further evidence to the potential of thermal soil improvement of normally consolidated clays. Transient changes in shear modulus also highlight the importance of considering drainage conditions and corresponding changes in effective stress state during heating-cooling cycles.more » « less
-
The failure of sheared granular materials is manifested in zones of intensive shearing known as shear bands. The onset and evolution of shear bands are influenced by many factors including specimen density, particle morphology, gradation, boundary conditions, and loading conditions. This paper investigated how particle morphology and drainage condition (drained versus undrained) affect the evolution of shear bands for saturated sand.more » « less
An official website of the United States government

