skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 27, 2026

Title: Partially Drained Responses of Dense Sand under Monotonic Simple Shear
Marine structures placed in the shallower seabed can experience pore water drainages with more complexity than those in onshore environments, particularly in coarse-grained soils where drainage is neither purely “drained” nor “undrained,” but Partially Drained (PD). However, current laboratory approaches for characterizing soil behavior are limited to modeling drainage conditions as fully drained or undrained. This paper presents results from a series of confined monotonic saturated simple shear tests under various drainage conditions on reconstituted medium dense to dense Monterey sand specimens to fill this knowledge gap. Although others have performed limited PD element-level tests under triaxial conditions, no documentation exists for tests using a simple monotonic shear configuration. To achieve PD, a special filter was fabricated and connected between the bottom of the specimen and the backpressure controller. The hydraulic filter comprises a series of needle valves to provide various hydraulic impedances. All simple shear tests in this paper were backpressure-saturated. Two different degrees of PD were considered and compared with fully drained and undrained conditions. Results show that the excess pore water pressure generation and measured volumetric changes in the PD tests are bounded between those measured from fully drained and undrained, proving the PD filter provided the hydraulic resistance to achieve PD condition.  more » « less
Award ID(s):
2112554
PAR ID:
10610202
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Society of Civil Engineers
Date Published:
ISBN:
9780784486016
Page Range / eLocation ID:
475 to 484
Format(s):
Medium: X
Location:
Louisville, Kentucky
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT This study investigates linkages between volume change, pore fluid drainage, shear wave velocity, and temperature of soft clays using a thermal triaxial cell equipped with bender elements, a measurement approach that has not been explored widely in past thermo-mechanical studies. Two kaolinite specimens were consolidated mechanically to a normally consolidated state and then subjected to drained and undrained heating-cooling cycles, respectively. After cooling, the specimens were subjected to further mechanical consolidation to evaluate changes in apparent preconsolidation stress. Both specimens showed net contractive thermal strains after a heating-cooling cycle and overconsolidated behavior during mechanical compression immediately after cooling. The shear wave velocity increased during drained heating, but negligible changes were observed during drained cooling, indicating permanent hardening because of thermal consolidation during the heating-cooling cycle. The shear wave velocity decreased during undrained heating because of a reduction in effective stress associated with thermal pressurization of the pore fluid but subsequently increased when drainage was permitted at elevated temperature. The shear wave velocity increased slightly during undrained cooling but decreased when drainage was permitted at room temperature. Net increases in small-strain shear modulus of 17 and 11 % after heating-cooling cycles under drained and undrained (with drainage after reaching stable temperatures) conditions, respectively, provide further evidence to the potential of thermal soil improvement of normally consolidated clays. Transient changes in shear modulus also highlight the importance of considering drainage conditions and corresponding changes in effective stress state during heating-cooling cycles. 
    more » « less
  2. Suction caissons have emerged as a viable solution for the foundations of offshore wind turbines, which are gaining momentum worldwide as an alternate energy source. When used in a multi-bucket jacket system, the system capacity is often governed by the uplift capacity of the windward bucket foundation. Seabed conditions at offshore windfarm sites often comprise dense sand where the soil response may be drained, partially drained or undrained depending on the loading regime, the foundation dimensions and the soil conditions. Given the large difference in uplift capacity of caissons for these different drainage conditions, predicting the behavior of a suction caisson under a range of drainage conditions becomes a paramount concern. Consequently, this paper presents the findings of a coupled finite element investigation of the monotonic uplift response of the windward caisson of a multi-bucket jacket system in a typical dense silica sand for a range of drainage conditions. The study adopts a Hypoplastic soil constitutive model capable of simulating the stress-strain-strength behavior of dense sand. This choice is justified by conducting a comparative study with other soil models – namely the Mohr Coulomb and bounding surface sand models – to determine the most efficient soil failure model to capture the complex undrained behavior of dense sand. The numerical predictions made in this study are verified by recreating the test conditions adopted in centrifuge tests previously conducted at the University of Western Australia, and demonstrating that the capacity from numerical analysis is consistent with the test results. The Hypoplastic soil constitutive model also provides an efficient method to produce accurate load capacity transition curves from an undrained to a drained soil state. 
    more » « less
  3. The failure of sheared granular materials is manifested in zones of intensive shearing known as shear bands. The onset and evolution of shear bands are influenced by many factors including specimen density, particle morphology, gradation, boundary conditions, and loading conditions. This paper investigated how particle morphology and drainage condition (drained versus undrained) affect the evolution of shear bands for saturated sand. 
    more » « less
  4. Calibration and validation of constitutive models and numerical modeling techniques used in analysis of soil liquefaction and its effects are often based on extensive comparisons with the results of element tests and centrifuge experiments. While good quality experimental data are available to understand and quantify the stress-strain-strength response of liquefiable soils in monotonic and cyclic drained/undrained element (triaxial and direct simple shear) tests, the results of these experiments are often less repeatable when the soil approaches liquefaction state and relatively large deviatoric strains suddenly develop within a few cycles of loading. The main source of these less repeatable patterns of soil behavior appears to be instability rather than the attainment of a state of material failure. The goal of this paper is to investigate the role of instability on the stress-strain response of liquefiable soils by using a critical state sand plasticity model that is enriched with an internal length scale representing the potential shear bands that may develop during monotonic or cyclic loading conditions. Through a series of numerical simulations, it is shown that the global stress-strain response measured in the element tests is a good approximation of the soil constitutive response before an unstable condition such as shear banding or liquefaction develops in the soil specimen. 
    more » « less
  5. This paper investigates the validity of the interpretation of results from testing saturated axisymmetric triaxial compression (ATC) sand specimens utilising three-dimensional (3D) synchrotron micro-computed tomography (SMT) to probe localised events that are completely missed or misinterpreted when analysing ATC measurements based on global standard measurements. Drained and undrained experiments were conducted at low and high back-pressures (BPs) coupled with multiple in situ 3D SMT to acquire high-resolution scans of the specimens at different axial strains. Specimens tested under low BP exhibited a large pore air volume change, which was not detected by the pump system that represents standard volume measurement. The increase in air volume caused a significant reduction in the degree of saturation leading to a possible transition from saturated to partially saturated constitutive behaviour. Undrained experiments exhibited a significant volume change contrary to the assumption of negligible volumetric strain for saturated undrained experiments. Air bubbles within the shear band for drained and undrained low-BP specimens showed opposite capillary pressure responses, increased for drained and decreased for undrained cases, due to the variation in the mechanism by which each of the two experiments predominantly counters the volume expansion within the shear band. 
    more » « less