Accurately forecasting Arctic sea ice from sub- seasonal to seasonal scales has been a major scientific effort with fundamental challenges at play. In addition to physics-based earth system models, researchers have been applying multiple statistical and machine learning models for sea ice forecast- ing. Looking at the potential of data-driven sea ice forecasting, we propose an attention-based Long Short Term Memory (LSTM) ensemble method to predict monthly sea ice extent up to 1 month ahead. Using daily and monthly satellite retrieved sea ice data from NSIDC and atmospheric and oceanic variables from ERA5 reanalysis product for 39 years, we show that our multi-temporal ensemble method outperforms several baseline and recently proposed deep learning models. This will substantially improve our ability in predicting future Arctic sea ice changes, which is fundamental for forecasting transporting routes, resource development, coastal erosion, threats to Arctic coastal communities and wildlife.
more »
« less
Multi-Task Deep Learning Based Spatiotemporal Arctic Sea Ice Forecasting
Important natural resources in the Arctic rely heavily on sea ice, making it important to forecast Arctic sea ice changes. Arctic sea ice forecasting often involves two connected tasks: sea ice concentration at each pixel and overall sea ice extent. Instead of having two separate models for two forecasting tasks, in this report, we study how to use multi-task learning techniques and leverage the connections between ice concentration and ice extent to improve accuracy for both prediction tasks. Because of the spatiotemporal nature of the data, we designed two novel multi-task learning models based on CNNs and ConvLSTMs, respectively. We also developed a custom loss function which trains the models to ignore land pixels when making predictions. Our experiments show our models can have better accuracies than separate models that predict sea ice extent and concentration separately, and that our accuracies are better than or comparable with results in the state-of-the-art studies.
more »
« less
- PAR ID:
- 10313429
- Date Published:
- Journal Name:
- 2021 IEEE International Conference on Big Data (BigData 2021)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Revolutionary advances in artificial intelligence (AI) in the past decade have brought transformative innovation across science and engineering disciplines. In the field of Arctic science, we have witnessed an increasing trend in the adoption of AI, especially deep learning, to support the analysis of Arctic big data and facilitate new discoveries. In this paper, we provide a comprehensive review of the applications of deep learning in sea ice remote sensing domains, focusing on problems such as sea ice lead detection, thickness estimation, sea ice concentration and extent forecasting, motion detection, and sea ice type classification. In addition to discussing these applications, we also summarize technological advances that provide customized deep learning solutions, including new loss functions and learning strategies to better understand sea ice dynamics. To promote the growth of this exciting interdisciplinary field, we further explore several research areas where the Arctic sea ice community can benefit from cutting-edge AI technology. These areas include improving multimodal deep learning capabilities, enhancing model accuracy in measuring prediction uncertainty, better leveraging AI foundation models, and deepening integration with physics-based models. We hope that this paper can serve as a cornerstone in the progress of Arctic sea ice research using AI and inspire further advances in this field.more » « less
-
Arctic amplification has altered the climate patterns both regionally and globally, resulting in more frequent and more intense extreme weather events in the past few decades. The essential part of Arctic amplification is the unprecedented sea ice loss as demonstrated by satellite observations. Accurately forecasting Arctic sea ice from sub-seasonal to seasonal scales has been a major research question with fundamental challenges at play. In addition to physics-based Earth system models, researchers have been applying multiple statistical and machine learning models for sea ice forecasting. Looking at the potential of data-driven approaches to study sea ice variations, we propose MT-IceNet – a UNet-based spatial and multi-temporal (MT) deep learning model for forecasting Arctic sea ice concentration (SIC). The model uses an encoder-decoder architecture with skip connections and processes multi-temporal input streams to regenerate spatial maps at future timesteps. Using bi-monthly and monthly satellite retrieved sea ice data from NSIDC as well as atmospheric and oceanic variables from ERA5 reanalysis product during 1979-2021, we show that our proposed model provides promising predictive performance for per-pixel SIC forecasting with up to 60% decrease in prediction error for a lead time of 6 months as compared to its state-of-the-art counterparts.more » « less
-
Abstract Anthropogenic warming has led to an unprecedented year-round reduction in Arctic sea ice extent. This has far-reaching consequences for indigenous and local communities, polar ecosystems, and global climate, motivating the need for accurate seasonal sea ice forecasts. While physics-based dynamical models can successfully forecast sea ice concentration several weeks ahead, they struggle to outperform simple statistical benchmarks at longer lead times. We present a probabilistic, deep learning sea ice forecasting system, IceNet. The system has been trained on climate simulations and observational data to forecast the next 6 months of monthly-averaged sea ice concentration maps. We show that IceNet advances the range of accurate sea ice forecasts, outperforming a state-of-the-art dynamical model in seasonal forecasts of summer sea ice, particularly for extreme sea ice events. This step-change in sea ice forecasting ability brings us closer to conservation tools that mitigate risks associated with rapid sea ice loss.more » « less
-
Although standard statistical methods and climate models can simulate and predict sea-ice changes well, it is still very hard to distinguish some direct and robust factors associated with sea-ice changes from its internal variability and other noises. Here, with long-term observations (38 years from 1980 to 2017), we apply the causal effect networks algorithm to explore the direct precursors of September Arctic sea-ice extent by adjusting the maximal lead time from one to eight months. For lead time of more than three months, June downward longwave radiation flux in the Canadian Arctic Archipelago is the only one precursor. However, for lead time of 1–3 months, August sea-ice concentration in Western Arctic represents the strongest positive correlation with September sea-ice extent, while August sea-ice concentration factors in other regions have weaker influences on the marginal seas. Other precursors include August wind anomalies in the lower latitudes accompanied with an Arctic high pressure anomaly, which induces the sea-ice loss along the Eurasian coast. These robust precursors can be used to improve the seasonal predictions of Arctic sea ice and evaluate the climate models.more » « less
An official website of the United States government

