skip to main content


Title: AI-Driven Agent-Based Models to Study the Role of Vaccine Acceptance in Controlling COVID-19 Spread in the US
We study the role of vaccine acceptance in controlling the spread of COVID-19 in the US using AI-driven agent-based models. Our study uses a 288 million node social contact network spanning all 50 US states plus Washington DC, comprised of 3300 counties, with 12.59 billion daily interactions. The highly-resolved agent-based models use realistic information about disease progression, vaccine uptake, production schedules, acceptance trends, prevalence, and social distancing guidelines. Developing a national model at this resolution that is driven by realistic data requires a complex scalable workflow, model calibration, simulation, and analytics components. Our workflow optimizes the total execution time and helps in improving overall human productivity.This work develops a pipeline that can execute US-scale models and associated workflows that typically present significant big data challenges. Our results show that, when compared to faster and accelerating vaccinations, slower vaccination rates due to vaccine hesitancy cause averted infections to drop from 6.7M to 4.5M, and averted total deaths to drop from 39.4K to 28.2K nationwide. This occurs despite the fact that the final vaccine coverage is the same in both scenarios. Improving vaccine acceptance by 10% in all states increases averted infections from 4.5M to 4.7M (a 4.4% improvement) and total deaths from 28.2K to 29.9K (a 6% increase) nationwide. The analysis also reveals interesting spatio-temporal differences in COVID-19 dynamics as a result of vaccine acceptance. To our knowledge, this is the first national-scale analysis of the effect of vaccine acceptance on the spread of COVID-19, using detailed and realistic agent-based models.  more » « less
Award ID(s):
1916805 1918656 2028004 2027541
NSF-PAR ID:
10313647
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Big Data
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We study allocation of COVID-19 vaccines to individuals based on the structural properties of their underlying social contact network. Even optimistic estimates suggest that most countries will likely take 6 to 24 months to vaccinate their citizens. These time estimates and the emergence of new viral strains urge us to find quick and effective ways to allocate the vaccines and contain the pandemic. While current approaches use combinations of age-based and occupation-based prioritizations, our strategy marks a departure from such largely aggregate vaccine allocation strategies. We propose a novel agent-based modeling approach motivated by recent advances in (i) science of real-world networks that point to efficacy of certain vaccination strategies and (ii) digital technologies that improve our ability to estimate some of these structural properties. Using a realistic representation of a social contact network for the Commonwealth of Virginia, combined with accurate surveillance data on spatio-temporal cases and currently accepted models of within- and between-host disease dynamics, we study how a limited number of vaccine doses can be strategically distributed to individuals to reduce the overall burden of the pandemic. We show that allocation of vaccines based on individuals' degree (number of social contacts) and total social proximity time is signi ficantly more effective than the currently used age-based allocation strategy in terms of number of infections, hospitalizations and deaths. Our results suggest that in just two months, by March 31, 2021, compared to age-based allocation, the proposed degree-based strategy can result in reducing an additional 56{110k infections, 3.2{5.4k hospitalizations, and 700{900 deaths just in the Commonwealth of Virginia. Extrapolating these results for the entire US, this strategy can lead to 3{6 million fewer infections, 181{306k fewer hospitalizations, and 51{62k fewer deaths compared to age-based allocation. The overall strategy is robust even: (i) if the social contacts are not estimated correctly; (ii) if the vaccine efficacy is lower than expected or only a single dose is given; (iii) if there is a delay in vaccine production and deployment; and (iv) whether or not non-pharmaceutical interventions continue as vaccines are deployed. For reasons of implementability, we have used degree, which is a simple structural measure and can be easily estimated using several methods, including the digital technology available today. These results are signi ficant, especially for resource-poor countries, where vaccines are less available, have lower efficacy, and are more slowly distributed. 
    more » « less
  2. Read, Andrew Fraser (Ed.)
    Two of the Coronavirus Disease 2019 (COVID-19) vaccines currently approved in the United States require 2 doses, administered 3 to 4 weeks apart. Constraints in vaccine supply and distribution capacity, together with a deadly wave of COVID-19 from November 2020 to January 2021 and the emergence of highly contagious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants, sparked a policy debate on whether to vaccinate more individuals with the first dose of available vaccines and delay the second dose or to continue with the recommended 2-dose series as tested in clinical trials. We developed an agent-based model of COVID-19 transmission to compare the impact of these 2 vaccination strategies, while varying the temporal waning of vaccine efficacy following the first dose and the level of preexisting immunity in the population. Our results show that for Moderna vaccines, a delay of at least 9 weeks could maximize vaccination program effectiveness and avert at least an additional 17.3 (95% credible interval [CrI]: 7.8–29.7) infections, 0.69 (95% CrI: 0.52–0.97) hospitalizations, and 0.34 (95% CrI: 0.25–0.44) deaths per 10,000 population compared to the recommended 4-week interval between the 2 doses. Pfizer-BioNTech vaccines also averted an additional 0.60 (95% CrI: 0.37–0.89) hospitalizations and 0.32 (95% CrI: 0.23–0.45) deaths per 10,000 population in a 9-week delayed second dose (DSD) strategy compared to the 3-week recommended schedule between doses. However, there was no clear advantage of delaying the second dose with Pfizer-BioNTech vaccines in reducing infections, unless the efficacy of the first dose did not wane over time. Our findings underscore the importance of quantifying the characteristics and durability of vaccine-induced protection after the first dose in order to determine the optimal time interval between the 2 doses. 
    more » « less
  3. null (Ed.)
    Assessing the effects of early nonpharmaceutical interventions on coronavirus disease 2019 (COVID-19) spread is crucial for understanding and planning future control measures to combat the pandemic. We use observations of reported infections and deaths, human mobility data, and a metapopulation transmission model to quantify changes in disease transmission rates in U.S. counties from 15 March to 3 May 2020. We find that marked, asynchronous reductions of the basic reproductive number occurred throughout the United States in association with social distancing and other control measures. Counterfactual simulations indicate that, had these same measures been implemented 1 to 2 weeks earlier, substantial cases and deaths could have been averted and that delayed responses to future increased incidence will facilitate a stronger rebound of infections and death. Our findings underscore the importance of early intervention and aggressive control in combatting the COVID-19 pandemic. 
    more » « less
  4. Abstract Hard-to-predict bursts of COVID-19 pandemic revealed significance of statistical modeling which would resolve spatio-temporal correlations over geographical areas, for example spread of the infection over a city with census tract granularity. In this manuscript, we provide algorithmic answers to the following two inter-related public health challenges of immense social impact which have not been adequately addressed (1) Inference Challenge assuming that there are N census blocks (nodes) in the city, and given an initial infection at any set of nodes, e.g. any N of possible single node infections, any $$N(N-1)/2$$ N ( N - 1 ) / 2 of possible two node infections, etc, what is the probability for a subset of census blocks to become infected by the time the spread of the infection burst is stabilized? (2) Prevention Challenge What is the minimal control action one can take to minimize the infected part of the stabilized state footprint? To answer the challenges, we build a Graphical Model of pandemic of the attractive Ising (pair-wise, binary) type, where each node represents a census tract and each edge factor represents the strength of the pairwise interaction between a pair of nodes, e.g. representing the inter-node travel, road closure and related, and each local bias/field represents the community level of immunization, acceptance of the social distance and mask wearing practice, etc. Resolving the Inference Challenge requires finding the Maximum-A-Posteriory (MAP), i.e. most probable, state of the Ising Model constrained to the set of initially infected nodes. (An infected node is in the $$+ \, 1$$ + 1 state and a node which remained safe is in the $$- \, 1$$ - 1 state.) We show that almost all attractive Ising Models on dense graphs result in either of the two possibilities (modes) for the MAP state: either all nodes which were not infected initially became infected, or all the initially uninfected nodes remain uninfected (susceptible). This bi-modal solution of the Inference Challenge allows us to re-state the Prevention Challenge as the following tractable convex programming : for the bare Ising Model with pair-wise and bias factors representing the system without prevention measures, such that the MAP state is fully infected for at least one of the initial infection patterns, find the closest, for example in $$l_1$$ l 1 , $$l_2$$ l 2 or any other convexity-preserving norm, therefore prevention-optimal, set of factors resulting in all the MAP states of the Ising model, with the optimal prevention measures applied, to become safe. We have illustrated efficiency of the scheme on a quasi-realistic model of Seattle. Our experiments have also revealed useful features, such as sparsity of the prevention solution in the case of the $$l_1$$ l 1 norm, and also somehow unexpected features, such as localization of the sparse prevention solution at pair-wise links which are NOT these which are most utilized/traveled. 
    more » « less
  5. Khudyakov, Yury E (Ed.)
    We construct an agent-based SEIR model to simulate COVID-19 spread at a 16000-student mostly non-residential urban university during the Fall 2021 Semester. We find that mRNA vaccine coverage at 100% combined with weekly screening testing of 25% of the campus population make it possible to safely reopen to in-person instruction. Our simulations exhibit a right-skew for total infections over the semester that becomes more pronounced with less vaccine coverage, less vaccine effectiveness and no additional preventative measures. This suggests that high levels of infection are not exceedingly rare with campus social connections the main transmission route. Finally, we find that if vaccine coverage is 100% and vaccine effectiveness is above 80%, then a safe reopening is possible even without facemask use. This models possible future scenarios with high coverage of additional “booster” doses of COVID-19 vaccines. 
    more » « less