skip to main content

Title: Realistic Commodity Flow Networks to Assess Vulnerability of Food Systems
As the complexity of our food systems increases, they also become susceptible to unanticipated natural and human-initiated events. Commodity trade networks are a critical component of our food systems in ensuring food availability. We develop a generic data-driven framework to construct realistic agricultural commodity trade networks. Our work is motivated by the need to study food flows in the context of biological invasions. These networks are derived by fusing gridded, administrative-level, and survey datasets on production, trade, and consumption. Further, they are periodic temporal networks reflecting seasonal variations in production and trade of the crop. We apply this approach to create networks of tomato flow for two regions – Senegal and Nepal. Using statistical methods and network analysis, we gain insights into spatiotemporal dynamics of production and trade. Our results suggest that agricultural systems are increasingly vulnerable to attacks through trade of commodities due to their vicinity to regions of high demand and seasonal variations in production and flows.
Authors:
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1633028 1745207 1916805 1918656 2027541
Publication Date:
NSF-PAR ID:
10313648
Journal Name:
Complex Networks 2021
Volume:
1015
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Food supply chains are essential for distributing goods from production to consumption points. These complex supply chains are important for food security and availability. Recent research has developed novel methods to estimate food flows with high spatial resolution, but we do not currently understand how fine-grained food supply chains vary in time. In this study, we use an improved version of the Food Flow Model to estimate food flows (kg) between all county pairs across all food commodity groups for the years 2007, 2012, and 2017 (which requires estimating 206.3 million links). We then determine the core counties tomore »the US food flow networks through time with a multi-criteria decision analysis technique. Our estimates of county-to-county food flows in time are freely available with this paper and could be useful for future research, policy, and decision-making.« less
  2. The COVID-19 crisis has revealed weaknesses and placed great stress on the agri-food system in the U.S. Many believe that it could be a catalyst event that leads to structural changes to improve the food system’s resilience. We use a sample of 220 articles published in prominent national newspapers and agricultural trade journals from March to May 2020 to explore the extent to which farmer responses to COVID-19 covered in the media represent examples of resistant, adaptive, or transformative strategies. The pandemic disrupted the U.S. food system and impacted farmers by reducing access to markets, lowering commodity prices, restricting accessmore »to farmworker labor, and shifting consumer demand. Media coverage of farmer responses to these stressors were coded into three alternative pathways: (i) reactive or buffering responses, (ii) adaptive responses; and (iii) transformative responses. Most news media coverage focused on the pandemic’s disruptive impacts on the U.S. food system, related negative impacts on farmers, and short-term responses by institutional actors, including policy-makers and food supply chain industry actors. Farmer responses to pandemic stressors were mentioned less frequently than farmer impacts and responses by institutional actors. The most common examples of farmer responses highlighted in the media reflected farmer reactive and buffering behaviors, which were mentioned significantly more frequently than adaptive or transformative responses. National newspapers were more likely to cover farmer responses and present examples of adaptive and transformative strategies compared to agricultural trade journals. Our findings suggest that news media coverage in the early months of the pandemic largely characterized the event as a rapid onset ‘natural’ disaster that created severe negative impacts. Media devoted more attention to short-term policy responses designed to mitigate these impacts than to farmer responses (in general) or to discussion of the deeper structural causes of and potential solutions to the vulnerabilities revealed by the pandemic. In this way, both national newspaper and agricultural trade journal coverage seems to promote frames that reduce the likelihood of the pandemic becoming the seed of a more resilient system.« less
  3. Among geographers, recent focus on the illicit and illegal has tended to fall into two camps. Economic geographers focus on regimes of illicitness and corresponding production of specific forms of economic space; political ecologists and land change scholars, on the other hand, scrutinised how illicit commodity flows shape land and resource use, especially in the global South. This paper offers an initial integration of these two relatively separate subfields, specifically in terms of their complementary attention to uneven development. We use the concept of “global commodity chains” to explore the ways in which the regulation of agricultural commodities shapes howmore »they are trafficked and embed in space, with particular attention to sites of international transshipment. When a commodity is illegal, spaces of transit take on significant analytical importance. As a heuristic, we present a comparative mapping of two agricultural commodity chains linking Colombia and the USA: coffee and cocaine. Their comparison highlights how “illicitness” fundamentally transforms cocaine’s spatiality, requiring risk evasion that results in characteristically enlarged transit spaces and huge differentials between producer and consumer price. We show how rents circulate in those transit spaces, socially and ecologically embedding in diffuse, fluid networks with severe consequences for people and environments. We conclude with implications for work on illicit commodities and the collateral social and environmental harms they produce.« less
  4. Agricultural systems are heterogeneous across temporal and spatial scales. Although much research has investigated farm size and economic output, the synergies and trade-offs across various agricultural and socioeconomic variables are unclear. This study applies a GIS-based approach to official Brazilian census data (Agricultural Censuses of 1995, 2006, and 2017) and surveys at the municipality level to (i) evaluate changes in the average soybean farm size across the country and (ii) compare agricultural and socioeconomic outcomes (i.e., soybean yield, agricultural production value, crop production diversity, and rural labor employment) relative to the average soybean farm size. Statistical tests (e.g., Kruskal–Wallis testsmore »and Spearman’s correlation) were used to analyze variable outcomes in different classes of farm sizes and respective Agricultural Censuses. We found that agricultural and socioeconomic outcomes are spatially correlated with soybean farm size class. Therefore, based on the concepts of trade-offs and synergies, we show that municipalities with large soybean farm sizes had larger trade-offs (e.g., larger farm size was associated with lower crop diversity), while small and medium ones manifest greater synergies. These patterns are particularly strong for analysis using the Agricultural Census of 2017. Trade-off/synergy analysis across space and time is key for supporting long-term strategies aiming at alleviating unemployment and providing sustainable food production, essential to achieve the UN Sustainable Development Goals.« less
  5. Abstract As the building sector faces global challenges that affect urban supplies of food, water and energy, multifaceted sustainability solutions need to be re-examined through the lens of built environments. Aquaponics, a strategy that combines recirculating aquaculture with hydroponics to optimize fish and plant production, has been recognized as one of "ten technologies which could change our lives" by merit of its potential to revolutionize how we feed urban populations. To holistically assess the environmental performance of urban aquaponic farms, impacts generated by aquaponic systems must be combined with impacts generated by host envelopes. This paper outlines the opportunities andmore »challenges of using life cycle assessment (LCA) to evaluate and design urban aquaponic farms. The methodology described here is part of a larger study of urban integration of aquaponics conducted by the interdisciplinary research consortium CITYFOOD. First, the challenges of applying LCA in architecture and agriculture are outlined. Next, the urban aquaponic farm is described as a series of unit process flows. Using the ISO 14040:2006 framework for developing an LCA, subsequent LCA phases are described, focusing on scenario-specific challenges and tools. Particular attention is given to points of interaction between growing systems and host buildings that can be optimized to serve both. Using a hybrid LCA framework that incorporates methods from the building sector as well as the agricultural sector, built environment professionals can become key players in interdisciplinary solutions for the food-water-energy nexus and the design of sustainable urban food systems.« less