skip to main content

This content will become publicly available on December 19, 2022

Title: Data-driven real-time strategic placement of mobile vaccine distribution sites
The deployment of vaccines across the US provides significant defense against serious illness and death from COVID-19. Over 70% of vaccine-eligible Americans are at least partially vaccinated, but there are pockets of the population that are under-vaccinated, such as in rural areas and some demographic groups (e.g. age, race, ethnicity). These unvaccinated pockets are extremely susceptible to the Delta variant, exacerbating the healthcare crisis and increasing the risk of new variants. In this paper, we describe a data-driven model that provides real-time support to Virginia public health officials by recommending mobile vaccination site placement in order to target under-vaccinated populations. Our strategy uses fine-grained mobility data, along with US Census and vaccination uptake data, to identify locations that are most likely to be visited by unvaccinated individuals. We further extend our model to choose locations that maximize vaccine uptake among hesitant groups. We show that the top recommended sites vary substantially across some demographics, demonstrating the value of developing customized recommendation models that integrate fine-grained, heterogeneous data sources. In addition, we used a statistically equivalent Synthetic Population to study the effect of combined demographics (eg, people of a particular race and age), which is not possible using US Census data more » alone. We validate our recommendations by analyzing the success rates of deployed vaccine sites, and show that sites placed closer to our recommended areas administered higher numbers of doses. Our model is the first of its kind to consider evolving mobility patterns in real-time for suggesting placement strategies customized for different targeted demographic groups. Our results will be presented at IAAI-22, but given the critical nature of the pandemic, we offer this extended version of that paper for more timely consideration of our approach and to cover additional findings. « less
Authors:
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1916805 1918656 2028004 2027541 1835598 1934578 1918940 2030477
Publication Date:
NSF-PAR ID:
10313654
Journal Name:
ArXivorg
ISSN:
2331-8422
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background When three SARS-CoV-2 vaccines came to market in Europe and North America in the winter of 2020–2021, distribution networks were in a race against a major epidemiological wave of SARS-CoV-2 that began in autumn 2020. Rapid and optimized vaccine allocation was critical during this time. With 95% efficacy reported for two of the vaccines, near-term public health needs likely require that distribution is prioritized to the elderly, health care workers, teachers, essential workers, and individuals with comorbidities putting them at risk of severe clinical progression. Methods We evaluate various age-based vaccine distributions using a validated mathematical model basedmore »on current epidemic trends in Rhode Island and Massachusetts. We allow for varying waning efficacy of vaccine-induced immunity, as this has not yet been measured. We account for the fact that known COVID-positive cases may not have been included in the first round of vaccination. And, we account for age-specific immune patterns in both states at the time of the start of the vaccination program. Our analysis assumes that health systems during winter 2020–2021 had equal staffing and capacity to previous phases of the SARS-CoV-2 epidemic; we do not consider the effects of understaffed hospitals or unvaccinated medical staff. Results We find that allocating a substantial proportion (>75 % ) of vaccine supply to individuals over the age of 70 is optimal in terms of reducing total cumulative deaths through mid-2021. This result is robust to different profiles of waning vaccine efficacy and several different assumptions on age mixing during and after lockdown periods. As we do not explicitly model other high-mortality groups, our results on vaccine allocation apply to all groups at high risk of mortality if infected. A median of 327 to 340 deaths can be avoided in Rhode Island (3444 to 3647 in Massachusetts) by optimizing vaccine allocation and vaccinating the elderly first. The vaccination campaigns are expected to save a median of 639 to 664 lives in Rhode Island and 6278 to 6618 lives in Massachusetts in the first half of 2021 when compared to a scenario with no vaccine. A policy of vaccinating only seronegative individuals avoids redundancy in vaccine use on individuals that may already be immune, and would result in 0.5% to 1% reductions in cumulative hospitalizations and deaths by mid-2021. Conclusions Assuming high vaccination coverage (>28 % ) and no major changes in distancing, masking, gathering size, hygiene guidelines, and virus transmissibility between 1 January 2021 and 1 July 2021 a combination of vaccination and population immunity may lead to low or near-zero transmission levels by the second quarter of 2021.« less
  2. Despite their disparate rates of infection and mortality, many communities of color report high levels of vaccine hesitancy. This paper describes racial differences in COVID-19 vaccine uptake in Detroit, and assesses, using a mediation model, how individuals’ personal experiences with COVID-19 and trust in authorities mediate racial disparities in vaccination acceptance. The Detroit Metro Area Communities Study (DMACS) is a panel survey of a representative sample of Detroit residents. There were 1012 respondents in the October 2020 wave, of which 856 (83%) were followed up in June 2021. We model the impact of race and ethnicity on vaccination uptake usingmore »multivariable logistic regression, and report mediation through direct experiences with COVID as well as trust in government and in healthcare providers. Within Detroit, only 58% of Non-Hispanic (NH) Black residents were vaccinated, compared to 82% of Non-Hispanic white Detroiters, 50% of Hispanic Detroiters, and 52% of other racial/ethnic groups. Trust in healthcare providers and experiences with friends and family dying from COVID-19 varied significantly by race/ethnicity. The mediation analysis reveals that 23% of the differences in vaccine uptake by race could be eliminated if NH Black Detroiters were to have levels of trust in healthcare providers similar to those among NH white Detroiters. Our analyses suggest that efforts to improve relationships among healthcare providers and NH Black communities in Detroit are critical to overcoming local COVID-19 vaccine hesitancy. Increased study of and intervention in these communities is critical to building trust and managing widespread health crises.« less
  3. Abstract Background Global vaccine development efforts have been accelerated in response to the devastating coronavirus disease 2019 (COVID-19) pandemic. We evaluated the impact of a 2-dose COVID-19 vaccination campaign on reducing incidence, hospitalizations, and deaths in the United States. Methods We developed an agent-based model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and parameterized it with US demographics and age-specific COVID-19 outcomes. Healthcare workers and high-risk individuals were prioritized for vaccination, whereas children under 18 years of age were not vaccinated. We considered a vaccine efficacy of 95% against disease following 2 doses administered 21 days apart achievingmore »40% vaccine coverage of the overall population within 284 days. We varied vaccine efficacy against infection and specified 10% preexisting population immunity for the base-case scenario. The model was calibrated to an effective reproduction number of 1.2, accounting for current nonpharmaceutical interventions in the United States. Results Vaccination reduced the overall attack rate to 4.6% (95% credible interval [CrI]: 4.3%–5.0%) from 9.0% (95% CrI: 8.4%–9.4%) without vaccination, over 300 days. The highest relative reduction (54%–62%) was observed among individuals aged 65 and older. Vaccination markedly reduced adverse outcomes, with non-intensive care unit (ICU) hospitalizations, ICU hospitalizations, and deaths decreasing by 63.5% (95% CrI: 60.3%–66.7%), 65.6% (95% CrI: 62.2%–68.6%), and 69.3% (95% CrI: 65.5%–73.1%), respectively, across the same period. Conclusions Our results indicate that vaccination can have a substantial impact on mitigating COVID-19 outbreaks, even with limited protection against infection. However, continued compliance with nonpharmaceutical interventions is essential to achieve this impact.« less
  4. During the Covid-19 pandemic a key role is played by vaccination to combat the virus. There are many possible policies for prioritizing vaccines, and different criteria for optimization: minimize death, time to herd immunity, functioning of the health system. Using an age-structured population compartmental finite-dimensional optimal control model, our results suggest that the eldest to youngest vaccination policy is optimal to minimize deaths. Our model includes the possible infection of vaccinated populations. We apply our model to real-life data from the US Census for New Jersey and Florida, which have a significantly different population structure. We also provide variousmore »estimates of the number of lives saved by optimizing the vaccine schedule and compared to no vaccination.

    « less
  5. Controlling the spread of SARS-CoV-2 will require high vaccination coverage, but acceptance of the vaccine could be impacted by perceptions of vaccine safety and effectiveness. The aim of this study was to characterize how vaccine safety and effectiveness impact acceptance of a vaccine, and whether this impact varied over time or across socioeconomic and demographic groups. Repeated cross-sectional surveys of an opt-in internet sample were conducted in 2020 in the US, mainland China, Taiwan, Malaysia, Indonesia, and India. Individuals were randomized into receiving information about a hypothetical COVID-19 vaccine with different safety and effectiveness profiles (risk of fever 5% vs.more »20% and vaccine effectiveness 50% vs. 95%). We examined the effect of the vaccine profile on vaccine acceptance in a logistic regression model, and included interaction terms between vaccine profile and socioeconomic/demographic variables to examine the differences in sensitivity to the vaccine profile. In total, 12,915 participants were enrolled in the six-country study, including the US (4054), China (2797), Taiwan (1278), Malaysia (1497), Indonesia (1527), and India (1762). Across time and countries, respondents had stronger preferences for a safer and more effective vaccine. For example, in the US in November 2020, acceptance was 3.10 times higher for a 95% effective vaccine with a 5% risk of fever, vs a vaccine 50% effective, with a 20% risk of fever (95% CI: 2.07, 4.63). Across all countries, there was an increase in the effect of the vaccine profile over time (p < 0.0001), with stronger preferences for a more effective and safer vaccine in November 2020 compared to August 2020. Sensitivity to the vaccine profile was also stronger in August compared to November 2020, in younger age groups, among those with lower income; and in those that are vaccine hesitant. Uptake of COVID-19 vaccines could vary in a country based upon effectiveness and availability. Effective communication tools will need to be developed for certain sensitive groups, including young adults, those with lower income, and those more vaccine hesitant.« less