skip to main content


Title: Data-driven real-time strategic placement of mobile vaccine distribution sites
The deployment of vaccines across the US provides significant defense against serious illness and death from COVID-19. Over 70% of vaccine-eligible Americans are at least partially vaccinated, but there are pockets of the population that are under-vaccinated, such as in rural areas and some demographic groups (e.g. age, race, ethnicity). These unvaccinated pockets are extremely susceptible to the Delta variant, exacerbating the healthcare crisis and increasing the risk of new variants. In this paper, we describe a data-driven model that provides real-time support to Virginia public health officials by recommending mobile vaccination site placement in order to target under-vaccinated populations. Our strategy uses fine-grained mobility data, along with US Census and vaccination uptake data, to identify locations that are most likely to be visited by unvaccinated individuals. We further extend our model to choose locations that maximize vaccine uptake among hesitant groups. We show that the top recommended sites vary substantially across some demographics, demonstrating the value of developing customized recommendation models that integrate fine-grained, heterogeneous data sources. In addition, we used a statistically equivalent Synthetic Population to study the effect of combined demographics (eg, people of a particular race and age), which is not possible using US Census data alone. We validate our recommendations by analyzing the success rates of deployed vaccine sites, and show that sites placed closer to our recommended areas administered higher numbers of doses. Our model is the first of its kind to consider evolving mobility patterns in real-time for suggesting placement strategies customized for different targeted demographic groups. Our results will be presented at IAAI-22, but given the critical nature of the pandemic, we offer this extended version of that paper for more timely consideration of our approach and to cover additional findings.  more » « less
Award ID(s):
1916805 1918656 2028004 2027541 1835598 1934578 1918940 2030477
NSF-PAR ID:
10313654
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rosenbaum, Janet E (Ed.)
    Vaccine hesitancy remains an issue in the United States. This study conducted an online survey [N = 3,013] using the Social Science Research Solution [SSRS] Opinion Panel web panelists, representative of U.S. adults age 18 and older who use the internet, with an oversample of rural-dwelling and minority populations between April 8 and April 22, 2021- as vaccine eligibility opened to the country. We examined the relationship between COVID-19 exposure and socio-demographics with vaccine intentions [eager-to-take, wait-and-see, undecided, refuse] among the unvaccinated using multinomial logistic regressions [ref: fully/partially vaccinated]. Results showed vaccine intentions varied by demographic characteristics and COVID-19 experience during the period that eligibility for the vaccine was extended to all adults. At the time of the survey approximately 40% of respondents were unvaccinated; 41% knew someone who had died of COVID-19, and 38% had experienced financial hardship as a result of the pandemic. The vaccinated were more likely to be highly educated, older adults, consistent with the United States initial eligibility criteria. Political affiliation and financial hardship experienced during the pandemic were the two most salient factors associated with being undecided or unwilling to take the vaccine. 
    more » « less
  2. null (Ed.)
    Abstract Background When three SARS-CoV-2 vaccines came to market in Europe and North America in the winter of 2020–2021, distribution networks were in a race against a major epidemiological wave of SARS-CoV-2 that began in autumn 2020. Rapid and optimized vaccine allocation was critical during this time. With 95% efficacy reported for two of the vaccines, near-term public health needs likely require that distribution is prioritized to the elderly, health care workers, teachers, essential workers, and individuals with comorbidities putting them at risk of severe clinical progression. Methods We evaluate various age-based vaccine distributions using a validated mathematical model based on current epidemic trends in Rhode Island and Massachusetts. We allow for varying waning efficacy of vaccine-induced immunity, as this has not yet been measured. We account for the fact that known COVID-positive cases may not have been included in the first round of vaccination. And, we account for age-specific immune patterns in both states at the time of the start of the vaccination program. Our analysis assumes that health systems during winter 2020–2021 had equal staffing and capacity to previous phases of the SARS-CoV-2 epidemic; we do not consider the effects of understaffed hospitals or unvaccinated medical staff. Results We find that allocating a substantial proportion (>75 % ) of vaccine supply to individuals over the age of 70 is optimal in terms of reducing total cumulative deaths through mid-2021. This result is robust to different profiles of waning vaccine efficacy and several different assumptions on age mixing during and after lockdown periods. As we do not explicitly model other high-mortality groups, our results on vaccine allocation apply to all groups at high risk of mortality if infected. A median of 327 to 340 deaths can be avoided in Rhode Island (3444 to 3647 in Massachusetts) by optimizing vaccine allocation and vaccinating the elderly first. The vaccination campaigns are expected to save a median of 639 to 664 lives in Rhode Island and 6278 to 6618 lives in Massachusetts in the first half of 2021 when compared to a scenario with no vaccine. A policy of vaccinating only seronegative individuals avoids redundancy in vaccine use on individuals that may already be immune, and would result in 0.5% to 1% reductions in cumulative hospitalizations and deaths by mid-2021. Conclusions Assuming high vaccination coverage (>28 % ) and no major changes in distancing, masking, gathering size, hygiene guidelines, and virus transmissibility between 1 January 2021 and 1 July 2021 a combination of vaccination and population immunity may lead to low or near-zero transmission levels by the second quarter of 2021. 
    more » « less
  3. Abstract

    As COVID‐19 vaccine is being rolled out in the US, public health authorities are gradually reopening the economy. To date, there is no consensus on a common approach among local authorities. Here, a high‐resolution agent‐based model is proposed to examine the interplay between the increased immunity afforded by the vaccine roll‐out and the transmission risks associated with reopening efforts. The model faithfully reproduces the demographics, spatial layout, and mobility patterns of the town of New Rochelle, NY — representative of the urban fabric of the US. Model predictions warrant caution in the reopening under the current rate at which people are being vaccinated, whereby increasing access to social gatherings in leisure locations and households at a 1% daily rate can lead to a 28% increase in the fatality rate within the next three months. The vaccine roll‐out plays a crucial role on the safety of reopening: doubling the current vaccination rate is predicted to be sufficient for safe, rapid reopening.

     
    more » « less
  4. Despite their disparate rates of infection and mortality, many communities of color report high levels of vaccine hesitancy. This paper describes racial differences in COVID-19 vaccine uptake in Detroit, and assesses, using a mediation model, how individuals’ personal experiences with COVID-19 and trust in authorities mediate racial disparities in vaccination acceptance. The Detroit Metro Area Communities Study (DMACS) is a panel survey of a representative sample of Detroit residents. There were 1012 respondents in the October 2020 wave, of which 856 (83%) were followed up in June 2021. We model the impact of race and ethnicity on vaccination uptake using multivariable logistic regression, and report mediation through direct experiences with COVID as well as trust in government and in healthcare providers. Within Detroit, only 58% of Non-Hispanic (NH) Black residents were vaccinated, compared to 82% of Non-Hispanic white Detroiters, 50% of Hispanic Detroiters, and 52% of other racial/ethnic groups. Trust in healthcare providers and experiences with friends and family dying from COVID-19 varied significantly by race/ethnicity. The mediation analysis reveals that 23% of the differences in vaccine uptake by race could be eliminated if NH Black Detroiters were to have levels of trust in healthcare providers similar to those among NH white Detroiters. Our analyses suggest that efforts to improve relationships among healthcare providers and NH Black communities in Detroit are critical to overcoming local COVID-19 vaccine hesitancy. Increased study of and intervention in these communities is critical to building trust and managing widespread health crises. 
    more » « less
  5. null (Ed.)
    Abstract Background Global vaccine development efforts have been accelerated in response to the devastating coronavirus disease 2019 (COVID-19) pandemic. We evaluated the impact of a 2-dose COVID-19 vaccination campaign on reducing incidence, hospitalizations, and deaths in the United States. Methods We developed an agent-based model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and parameterized it with US demographics and age-specific COVID-19 outcomes. Healthcare workers and high-risk individuals were prioritized for vaccination, whereas children under 18 years of age were not vaccinated. We considered a vaccine efficacy of 95% against disease following 2 doses administered 21 days apart achieving 40% vaccine coverage of the overall population within 284 days. We varied vaccine efficacy against infection and specified 10% preexisting population immunity for the base-case scenario. The model was calibrated to an effective reproduction number of 1.2, accounting for current nonpharmaceutical interventions in the United States. Results Vaccination reduced the overall attack rate to 4.6% (95% credible interval [CrI]: 4.3%–5.0%) from 9.0% (95% CrI: 8.4%–9.4%) without vaccination, over 300 days. The highest relative reduction (54%–62%) was observed among individuals aged 65 and older. Vaccination markedly reduced adverse outcomes, with non-intensive care unit (ICU) hospitalizations, ICU hospitalizations, and deaths decreasing by 63.5% (95% CrI: 60.3%–66.7%), 65.6% (95% CrI: 62.2%–68.6%), and 69.3% (95% CrI: 65.5%–73.1%), respectively, across the same period. Conclusions Our results indicate that vaccination can have a substantial impact on mitigating COVID-19 outbreaks, even with limited protection against infection. However, continued compliance with nonpharmaceutical interventions is essential to achieve this impact. 
    more » « less