skip to main content


Title: Diagnosis of Atmospheric Drivers of High-Latitude Evapotranspiration Using Structural Equation Modeling
Evapotranspiration (ET) is a relevant component of the surface moisture budget and is associated with different drivers. The interrelated drivers cause variations at daily to interannual timescales. This study uses structural equation modeling to diagnose the drivers over an ensemble of 45 high-latitude sites, each of which provides at least several years of in situ measurements, including latent heat fluxes derived from eddy covariance flux towers. The sites are grouped by vegetation type (tundra, forest) and the presence or absence of permafrost to determine how the relative importance of different drivers depends on land surface characteristics. Factor analysis is used to quantify the common variance among the variables, while a path analysis procedure is used to assess the independent contributions of different variables. The variability of ET at forest sites generally shows a stronger dependence on relative humidity, while ET at tundra sites is more temperature-limited than moisture-limited. The path analysis shows that ET has a stronger direct correlation with solar radiation than with any other measured variable. Wind speed has the largest independent contribution to ET variability. The independent contribution of solar radiation is smaller because solar radiation also affects ET through various other drivers. The independent contribution of wind speed is especially apparent at forest wetland sites. For both tundra and forest vegetation, temperature loads higher on the first factor when permafrost is present, implying that ET will become less sensitive to temperature as permafrost thaws.  more » « less
Award ID(s):
1636476 1936752 2011276 1830131
NSF-PAR ID:
10313988
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Atmosphere
Volume:
12
Issue:
10
ISSN:
2073-4433
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vegetation structure and function are key design choices in terrestrial models that affect the relationship between carbon uptake and environmental drivers. Here, we investigate how representing canopy vertical structure in a terrestrial biosphere model—that is, micrometeorological, leaf area, and leaf water profiles—influences carbon uptake at five U.S. temperate deciduous forest sites in July. Specifically, we test whether the interannual variability (IAV) of gross primary productivity (GPP) responds differently to four abiotic environmental drivers—air temperature, relative humidity, incoming shortwave radiation, and soil moisture—using either a Community Land Model multilayer canopy model (CLM‐ml) or a big‐leaf model (CLM4.5/CLM5). We conclude that vertical leaf area and microclimatic profiles (temperature, humidity, and wind) do not impact GPP IAV compared to a single‐layer model when plant hydraulics is excluded. However, with a mechanistic representation of plant hydraulics there is vertically varying water stress in CLM‐ml, and the sensitivity of carbon uptake to particular climate variables changes with height, resulting in dampened canopy‐scale GPP IAV relative to CLM4.5. Dampening is due to both a reduced dependence on soil moisture and opposing climatic forcing on different leaf layers. Such dampening is not evident in the single‐layer representation of plant hydraulic water stress implemented in the recently released CLM5. Overall, both model representations of the canopy fail to accurately simulate observed GPP IAV and this may be related by their inability to capture the upper range of observed hourly GPP and diffuse light‐GPP relationships that cannot be resolved by canopy structure alone.

     
    more » « less
  2. Climate change is affecting the Arctic at an unprecedented rate, potentially releasing substantial amounts of greenhouse gases (CO2 (carbon dioxide) and CH4 (Methane)) from tundra ecosystems. Measuring greenhouse gas emissions in the Arctic, particularly outside of the summer period, is very challenging due to extreme weather conditions. This research project provided the first annual balance of both CH4 and CO2 fluxes in a total of five sites spanning a 300Km transect across the North Slope of Alaska (three sites in Barrow, one site in Aquasuk, and one site in Ivotuk). The results from the continuous year-round CH4 fluxes across these sites showed how cumulative emissions for the cold season accounted on average for 50% of the annual budget (Zona et al., 2016), a notably higher contribution than previously modelled, and also higher than observed in boreal Alaska. The analysis of the cold period CH4 fluxes suggested that the presence of an unfrozen soil layer in the fall and early winter was a major control on cold season CH4 emissions (Zona et al., 2016). We also cross-compared all instruments measuring ecosystem scale CO2 and CH4 fluxes operating at our sites, which allowed us to make recommendation of the best performing instruments under these extreme weather conditions. The best performing instruments were closed path analyzers and intermittently heated sonic anemometers which had the highest final data cover. A continuously heated anemometer increased data coverage relative to non-heated anemometers, but resulted in an overestimation of the fluxes (Goodrich et al., 2016). We developed an intermittent heating strategy that was only activated when the data quality was low, and appeared to be the preferable method to prevent icing while avoiding biases to the measurements. Closed and open-path analyzers showed good agreement, but data coverage was much greater when using closed-path analyzers, especially during winter (Goodrich et al., 2016). Given the importance of vegetation on greenhouse gas emissions, we also investigated the role of different vegetation types under a broad range of environmental conditions on the CH4 emissions. We found that vegetation type can be a very useful tool to describe the spatial variability in CH4 emissions over the landscape (McEwing et al., 2015), and that just two vegetation types were able to explain about 50% of the variability in CH4 fluxes across ecosystems even hundreds of kilometers apart (Davidson et al., 2016a). To upscale these plot scale fluxes we completed high resolution vegetation maps in each of our tower sites (Davidson et al., 2016b), which are the finest resolution maps currently available from these sites, and also contributed to larger scale mapping effort (Walker et al., 2016). The soil microbial analysis from soil cores collected across our sites showed an association between overall microbial diversity and latitude, with a higher diversity found in the northerly site and lower diversity in the southerly site, contrary to current knowledge (Wagner et al., accepted). We also measured CH4 and CO2 concentrations in the soil, which showed to be orders of magnitude higher than in the atmosphere (Arndt et al., 2016). Our results contributed to model development (Xu et al., 2016; Kobayashi et al., 2016; Liljedahl et al., 2016; Luus et al., 2017), and to a wide variety of other projects as shown by the hundreds of download of our data from Ameriflux. Overall, this grant resulted in the publication of 25 peer reviewed journal articles, including in high impact factor journals such as PNAS (Proceedings of the National Academy of Sciences of the United States of America), and Nature Climate Change, in addition to five more in review and in preparation, and supported the research of seven PhD students, two master students, and ten undergraduate students. 
    more » « less
  3. Co-locating solar photovoltaics (PV) with agriculture or natural vegetation could provide a sustainable solution to meeting growing food and energy demands, particularly considering the recent concerns of solar PV encroaching on agricultural and natural areas. However, the identification and quantification of the mutual interactions between the solar panels and the underlying soil-vegetation system are scarce. This is a critical research gap, as understanding these feedbacks are important for minimizing environmental impacts and for designing resource conserving and climate-resilient food-energy production systems. We monitored the microclimate, soil moisture distribution, and soil properties at three utility-scale solar facilities (MN, USA) with different site management practices, with an emphasis on verifying previously hypothesized vegetation-driven cooling of solar panels. The microclimatic variables (air and soil temperature, relative humidity, wind speed and direction) and soil moisture were significantly different between the PV site with bare soil (bare-PV) and vegetated PV (veg.-PV) site. Compared to the bare-PV site, the veg.-PV site also had significantly higher levels of total soil carbon and total soil nitrogen, as well as higher humidity and lower air and soil temperatures. Further, soil moisture heterogeneity created by the solar panels was homogenized by vegetation at the veg.-PV sites. However, we found no significant panel cooling or increase in electricity output that could be linked to co-location of the panels with vegetation in these facilities. We link these outcomes to the background climatic conditions (not water limited system) and soil moisture conditions. In regions with persistent high soil moisture (more frequent rainfall events) soil evaporation from wet bare soil may be comparable or even higher than from a vegetated surface. Thus, the cooling effects of vegetation on solar panels are not universal but rather site-specific depending on the background climate and soil properties. Regardless, the other co-benefits of maintaining vegetation at solar PV sites including the impacts on microclimate, soil moisture distribution, and soil quality support the case for solar PV–vegetation co-located systems. 
    more » « less
  4. Abstract

    Evapotranspiration (ET) is a significant ecosystem flux, governing the partitioning of energy at the land surface. Understanding the seasonal pattern and magnitude ofETis critical for anticipating a range of ecosystem impacts, including drought, heat‐wave events, and plant mortality. In this study, we identified the relative controls of seasonal variability inET, and how these controls vary among ecosystems. We used overlapping AmeriFlux and PhenoCam time series at a daily timestep from 20 sites to explore these linkages (# site‐years >100), and our study area covered a broad climatological aridity gradient in the U.S. and Canada. We focused on disentangling the most important controls of bulk surface conductance (Gs) and evaporative fraction (EF = LE/[H + LE]), whereLEandHrepresent latent and sensible heat fluxes, respectively. Specifically, we investigated how vegetation phenology varied in importance relative to meteorological variables (vapor pressure deficit and antecedent precipitation) as a driver ofGsandEFusing path analysis, a framework for quantifying and comparing the causal linkages among multiple response and explanatory variables. Our results revealed that the drivers ofGsandEFseasonality varied significantly between energy‐ and water‐limited ecosystems. Specifically, precipitation had a much higher effect in water‐limited ecosystems, while seasonal patterns in canopy greenness emerged as a stronger control in energy‐limited ecosystems. Given that phenology is expected to shift under future climate, our findings provide key information for understanding and predicting how phenology may impact 21st‐century hydroclimate regimes and the surface‐energy balance.

     
    more » « less
  5. Abstract

    Soil moisture and evapotranspiration (ET) are important components of boreal forest hydrology that affect ecological processes and land‐atmosphere feedbacks. Future trends in soil moisture in particular are uncertain. Therefore, accurate modeling of these dynamics and understanding of concomitant sources of uncertainty are critical. Here, we conduct a global sensitivity analysis, Monte Carlo parameterization, and analysis of parameter uncertainty and its contribution to future soil moisture and ET uncertainty using a physically based ecohydrologic model in multiple boreal forest types. Soil and plant hydraulic parameters and LAI have the largest effects on simulated summer soil moisture at two contrasting sites. In future scenario simulations, the selection of parameters and global climate model (GCM) choice between two GCMs influence projected changes in soil moisture and ET about as much as the projected effects of climate change in the less sensitive GCM with a late‐century, high‐emissions scenario, though the relative effects of parameters, GCM, and climate vary among hydrologic variables and study sites. Saturated volumetric water content and sensitivity of stomatal conductance to vapor pressure deficit have the most statistically significant effects on change in ET and soil moisture, though there is considerable variability between sites and GCMs. The results of this study provide estimates of: (a) parameter importance and statistical significance for soil moisture modeling, (b) parameter values for physically based soil‐vegetation‐atmosphere transfer models in multiple boreal forest types, and (c) the contributions of uncertainty in these parameters to soil moisture and ET uncertainty in future climates.

     
    more » « less