skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Preliminary Analyses of Expression of Learning and Memory Related Genes in Honey Bees (<i>Apis mellifera</i>) in Free-Choice Learning Paradigms
Award ID(s):
1950805
PAR ID:
10314182
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Natural Science
Volume:
13
Issue:
06
ISSN:
2150-4091
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Reconstructions of global hydroclimate during the Common Era (CE; the past ∼2000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (δ18O) or hydrogen (δ2H) isotopic compositions of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 759 isotope records from the terrestrial and marine realms, including glacier and ground ice (210); speleothems (68); corals, sclerosponges, and mollusks (143); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and nonexperts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diversearchives and with climate-model-simulated fields. This is the firstglobal-scale collection of water isotope proxy records from multiple typesof geological and biological archives. It is suitable for evaluatinghydroclimate processes through time and space using large-scale synthesis,model–data intercomparison and (paleo)data assimilation. The Iso2k databaseis available for download at https://doi.org/10.25921/57j8-vs18 (Konecky and McKay, 2020) and is also accessible via the NOAA/WDS Paleo Datalanding page: https://www.ncdc.noaa.gov/paleo/study/29593 (last access: 30 July 2020). 
    more » « less
  2. Abstract. Terrestrial ecliptic dayside observations of the exospheric Lyman-α column intensity between 3–15 Earth radii (RE) by UVIS/HDAC (UVIS – ultraviolet imaging spectrograph; HDAC – hydrogen-deuterium absorptioncell) Lyman-α photometer at CASSINI have been analyzed to derive the neutral exospheric H-density profile at the Earth's ecliptic dayside in this radial range. The data were measured during CASSINI's swing-by maneuver at the Earth on 18 August 1999 and are published by Werner et al. (2004). In this study the dayside HDAC Lyman-α observations published by Werner et al. (2004) are compared to calculated Lyman-α intensities based on the 3D H-density model derived from TWINS (Two Wide-angle Imaging Neutral-atom Spectrometers) Lyman-α observations between 2008–2010 (Zoennchen et al., 2015). It was found that both Lyman-α profiles show a very similar radial dependence in particular between 3–8 RE. Between 3.0–5.5 RE impact distance Lyman-α observations of both TWINS and UVIS/HDAC exist at the ecliptic dayside. In this overlapping region the cross-calibration of the HDAC profile against the calculated TWINS profile was done, assuming that the exosphere there was similar for both due to comparable space weather conditions. As a result of the cross-calibration the conversion factor between counts per second and rayleigh, fc=3.285 counts s−1 R−1, is determined for these HDAC observations. Using this factor the radial H-density profile for the Earth's ecliptic dayside was derived from the UVIS/HDAC observations, which constrained the neutral H density there at 10 RE to a value of 35 cm−3. Furthermore, a faster radial H-density decrease was found at distances above 8 RE (≈r-3) compared to the lower distances of 3–7 RE (≈r-2.37). This increased loss of neutral H above 8 RE might indicate a higher rate of H ionization in the vicinity of the magnetopause at 9–11 RE (near subsolar point) and beyond, because of increasing charge exchange interactions of exospheric H atoms with solar wind ions outside the magnetosphere. 
    more » « less
  3. Abstract. Chlorine-initiated oxidation of n-alkanes (C8−12) under high-nitrogen oxide conditions was investigated. Observed secondary organic aerosol yields (0.16 to 1.65) are higher than those for OH-initiated oxidation of C8−12 alkanes (0.04 to 0.35). A high-resolution time-of-flight chemical ionization mass spectrometer coupled to a Filter Inlet for Gases and AEROsols (FIGAERO–CIMS) was used to characterize the gas- and particle-phase molecular composition. Chlorinated organics were observed, which likely originated from chlorine addition to the double bond present on the heterogeneously produced dihydrofurans. A two-dimensional thermogram representation was developed to visualize the composition and relative volatility of organic aerosol components using unit-mass resolution data. Evidence of oligomer formation and thermal decomposition was observed. Aerosol yield and oligomer formation were suppressed under humid conditions (35% to 67% RH) relative to dry conditions (under 5% RH). The temperature at peak desorption signal, Tmax, a proxy for aerosol volatility, was shown to change with aerosol filter loading, which should be constrained when evaluating aerosol volatilities using the FIGAERO–CIMS. Results suggest that long-chain anthropogenic alkanes could contribute significantly to ambient aerosol loading over their atmospheric lifetime. 
    more » « less
  4. null (Ed.)
    Abstract. In this study, we present the first combined open- and coastal-ocean pCO2 mapped monthly climatology (Landschützer et al., 2020b, https://doi.org/10.25921/qb25-f418, https://www.nodc.noaa.gov/ocads/oceans/MPI-ULB-SOM_FFN_clim.html, last access: 8 April 2020) constructed from observations collected between 1998 and 2015 extracted from the Surface Ocean CO2 Atlas (SOCAT) database. We combine two neural network-based pCO2 products, one from the open ocean and the other from the coastal ocean, and investigate their consistency along their common overlap areas. While the difference between open- and coastal-ocean estimates along the overlap area increases with latitude, it remains close to 0 µatm globally. Stronger discrepancies, however, exist on the regional level resulting in differences that exceed 10 % of the climatological mean pCO2, or an order of magnitude larger than the uncertainty from state-of-the-art measurements. This also illustrates the potential of such an analysis to highlight where we lack a good representation of the aquatic continuum and future research should be dedicated. A regional analysis further shows that the seasonal carbon dynamics at the coast–open interface are well represented in our climatology. While our combined product is only a first step towards a true representation of both the open-ocean and the coastal-ocean air–sea CO2 flux in marine carbon budgets, we show it is a feasible task and the present data product already constitutes a valuable tool to investigate and quantify the dynamics of the air–sea CO2 exchange consistently for oceanic regions regardless of its distance to the coast. 
    more » « less