skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptation of Multiobjective Reservoir Operations to Snowpack Decline in the Western United States
Long-term snowpack decline is among the best-understood impacts of climate change on water resources systems. This trend has been observed for decades and is projected to continue even in climate projections in which total runoff volumes do not change significantly. For basins in which snowpack has historically provided intra-annual water storage, snowpack decline creates several issues that may require adaptation to infrastructure, operations, or both. This study develops an approach to analyze vulnerabilities and adaptations specifically focused on the challenge of snowpack decline, using the northern California reservoir system as a case study. We first introduce an open-source daily time-step simulation model of this system, which is validated against historical observations of operations. Multiobjective vulnerabilities to snowpack decline are then examined using a set of downscaled climate scenarios to capture the physically based effects of rising temperatures. A statistical analysis shows that the primary impacts include water supply shortage and lower reservoir storage resulting from the seasonal shift in runoff timing. These challenges identified from the vulnerability assessment inform proposed adaptations to operations to maintain multiobjective performance across the ensemble of plausible future scenarios, which include other uncertain hydrologic changes. To adapt seasonal reservoir management without the cost of additional infrastructure, we specifically propose and test adaptations that parameterize the structure of existing operating policies: a dynamic flood control rule curve and revised snowpack-to-streamflow forecasting methods to improve seasonal runoff predictability given declining snowpack. These adaptations are shown to mitigate the majority of vulnerabilities caused by snowpack decline across the scenario ensemble, with remaining opportunities for improvement using formal policy search and dynamic adaptation techniques. The coupled approach to vulnerability assessment and adaptation is generalizable to other snowmelt-dominated water resources systems facing the loss of seasonal storage due to rising temperatures.  more » « less
Award ID(s):
1639268
PAR ID:
10314238
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of water resources planning and management
Volume:
146
Issue:
12
ISSN:
1943-5452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate vulnerability assessments rely on water infrastructure system models that imperfectly predict performance metrics under ensembles of future scenarios. There is a benefit to reduced complexity system representations to support these assessments, especially when large ensembles are used to better characterize future uncertainties. An important question is whether the total uncertainty in the output metrics is primarily attributable to the climate ensemble or to the systems model itself. Here we develop a method to address this question by combining time series error models of performance metrics with time‐varying Sobol sensitivity analysis. The method is applied to a reduced complexity multi‐reservoir systems model of the Sacramento‐San Joaquin River Basin in California to demonstrate the decomposition of flood risk and water supply uncertainties under an ensemble of climate change scenarios. The results show that the contribution of systems model error to total uncertainty is small (∼5%–15%) relative to climate based uncertainties. This indicates that the reduced complexity systems model is sufficiently accurate for use in the context of the vulnerability assessment. We also observe that climate uncertainty is dominated by the choice of general circulation model and its interactive effects with the representative concentration pathway (RCP), rather than the RCP alone. This observation has implications for how climate vulnerabilities should be interpreted. 
    more » « less
  2. Climate change projections consistently demonstrate that warming temperatures and dwindling seasonal snowpack will elicit cascading effects on ecosystem function and water resource availability. Despite this consensus, little is known about potential changes in the variability of ecohydrological conditions, which is also required to inform climate change adaptation and mitigation strategies. Considering potential changes in ecohydrological variability is critical to evaluating the emergence of trends, assessing the likelihood of extreme events such as floods and droughts, and identifying when tipping points may be reached that fundamentally alter ecohydrological function. Using a single-model Large Ensemble with sophisticated terrestrial ecosystem representation, we characterize projected changes in the mean state and variability of ecohydrological processes in historically snow-dominated regions of the Northern Hemisphere. Widespread snowpack reductions, earlier snowmelt timing, longer growing seasons, drier soils, and increased fire risk are projected for this century under a high-emissions scenario. In addition to these changes in the mean state, increased variability in winter snowmelt will increase growing-season water deficits and increase the stochasticity of runoff. Thus, with warming, declining snowpack loses its dependable buffering capacity so that runoff quantity and timing more closely reflect the episodic characteristics of precipitation. This results in a declining predictability of annual runoff from maximum snow water equivalent, which has critical implications for ecosystem stress and water resource management. Our results suggest that there is a strong likelihood of pervasive alterations to ecohydrological function that may be expected with climate change. 
    more » « less
  3. Abstract On the Arctic Coastal Plain (ACP) in northern Alaska (USA), permafrost and abundant surface‐water storage define watershed hydrological processes. In the last decades, the ACP landscape experienced extreme climate events and increased lake water withdrawal (LWW) for infrastructure construction, primarily ice roads and industrial operations. However, their potential (combined) effects on streamflow are relatively underexplored. Here, we applied the process‐based, spatially distributed hydrological and thermal Water Balance Simulation Model (10 m spatial resolution) to the 30 km2Crea Creek watershed located on the ACP. The impacts of documented seasonal climate extremes and LWW were evaluated on seasonal runoff (May–August), including minimum 7‐day mean flow (MQ7), the recovery time of MQ7 to pre‐perturbation conditions, and the duration of streamflow conditions that prevents fish passage. Low‐rainfall scenarios (21% of normal, one to three summers in a row) caused a larger reduction in MQ7 (−56% to −69%) than LWW alone (−44% to −58%). Decadal‐long consecutive LWW under average climate conditions resulted in a new equilibrium in low flow and seasonal runoff after 3 years that included a disconnected stream network, a reduced watershed contributing area (54% of total watershed area), and limited fish passage of 20 days (vs. 6 days under control conditions) throughout summer. Our results highlight that, even under current average climatic conditions, LWW is not offset by same‐year snowmelt as currently assumed in land management regulations. Effective land management would therefore benefit from considering the combined impact of climate change and industrial LWWs. 
    more » « less
  4. Abstract Reservoirs are designed and operated to mitigate hydroclimatic variability and extremes to fulfill various beneficial purposes. Existing reservoir infrastructure capacity and operation policies derived from historical records are challenged by hydrologic regime change and storage reduction from sedimentation. Furthermore, climate change could amplify the water footprint of reservoir operation (i.e. non-beneficial evaporative loss), further influencing the complex interactions among hydrologic variability, reservoir characteristics, and operation decisions. Disentangling and quantifying these impacts is essential to assess the effectiveness of reservoir operation under future climate and identify the opportunities for adaptive reservoir management (e.g. storage reallocation). Using reservoirs in Texas as a testing case, this study develops data-driven models to represent the current reservoir operation policies and assesses the challenges and opportunities in flood control and water supply under dynamically downscaled climate projections from the Coupled Model Intercomparison Project Phase 6. We find that current policies are robust in reducing future flood risks by eliminating small floods, reducing peak magnitude, and extending the duration for large floods. Current operation strategies can effectively reduce the risk of storage shortage for many reservoirs investigated, but reservoir evaporation and sedimentation pose urgent needs for revisions in the current guidelines to enhance system resilience. We also identify the opportunities for reservoir storage reallocation through seasonal-varying conservation pool levels to improve water supply reliability with negligible flood risk increase. This study provides a framework for stakeholders to evaluate the effectiveness of the current reservoir operation policy under future climate through the interactions among hydroclimatology, reservoir infrastructure, and operation policy. 
    more » « less
  5. This study investigates the impacts of climate change on precipitation and snowpack in the interior western United States (IWUS) using two sets of convection-permitting Weather Research and Forecasting model simulations. One simulation represents the ~1990 climate, and another represents an ~2050 climate using a pseudo-global warming approach. Climate perturbations for the future climate are given by the CMIP5 ensemble-mean global climate models under the high-end emission scenario. The study analyzes the projected changes in spatial patterns of seasonal precipitation and snowpack, with particular emphasis on the effects of elevation on orographic precipitation and snowpack changes in four key mountain ranges: the Montana Rockies, Greater Yellowstone area, Wasatch Range, and Colorado Rockies. The IWUS simulations reveal an increase in annual precipitation across the majority of the IWUS in this warmer climate, driven by more frequent heavy to extreme precipitation events. Winter precipitation is projected to increase across the domain, while summer precipitation is expected to decrease, particularly in the High Plains. Snow-to-precipitation ratios and snow water equivalent are expected to decrease, especially at lower elevations, while snowpack melt is projected to occur earlier by up to 26 days in the ~2050 climate, highlighting significant impacts on regional water resources and hydrological management. 
    more » « less