ABSTRACT Marine heatwaves (MHWs) caused by multiple phenomena with days to months duration are increasingly common disturbances in ocean ecosystems. We investigated the impacts of MHWs on pelagic communities using spatially resolved time‐series of multiple trophic levels from the Southern California Current Ecosystem. Indices of phytoplankton biomass mostly declined during MHWs because of reduced nutrient supply (exceptingProchlorococcus) and were generally more sensitive to marine heatwave intensity than duration. By contrast, mesozooplankton (as estimated by zooplankton displacement volume) were somewhat more strongly correlated with MHW duration than intensity. Zooplankton anomalies were also positively correlated with fucoxanthin (diatom) anomalies, highlighting possible bottom‐up influences during MHWs. Mobile consumers (forage fish) showed more complex responses, with fish egg abundance declining during MHWs but not correlating with any MHW characteristics. Our findings provide partial evidence of how MHW characteristics can shape variable ecological responses due to the differing life spans and behaviours of different trophic levels.
more »
« less
Understanding the effects of climate change via disturbance on pristine arctic lakes—multitrophic level response and recovery to a 12‐yr, low‐level fertilization experiment
Effects of climate change-driven disturbance on lake ecosystems can be subtle; indirect effects include increased nutrient loading that could impact ecosystem function. We designed a low-level fertilization experiment to mimic persistent, climate change-driven disturbances (deeper thaw, greater weathering, or thermokarst failure) delivering nutrients to arctic lakes. We measured responses of pelagic trophic levels over 12 yr in a fertilized deep lake with fish and a shallow fishless lake, compared to paired reference lakes, and monitored recovery for 6 yr. Relative to prefertilization in the deep lake, we observed a maximum pelagic response in chl a (+201%), dissolved oxygen (DO, _43%), and zooplankton biomass (+88%) during the fertilization period (2001–2012). Other responses to fertilization, such as water transparency and fish relative abundance, were delayed, but both ultimately declined. Phyto- and zooplankton biomass and community composition shifted with fertilization. The effects of fertilization were less pronounced in the paired shallow lakes, because of a natural thermokarst failure likely impacting the reference lake. In the deep lake there was (a) moderate resistance to change in ecosystem functions at all trophic levels, (b) eventual responses were often nonlinear, and (c) postfertilization recovery (return) times were most rapid at the base of the food web (2–4 yr) while higher trophic levels failed to recover after 6 yr. The timing and magnitude of responses to fertilization in these arctic lakes were similar to responses in other lakes, suggesting indirect effects of climate change that modify nutrient inputs may affect many lakes in the future.
more »
« less
- PAR ID:
- 10314243
- Date Published:
- Journal Name:
- Limnology and Oceanography
- ISSN:
- 0024-3590
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite low species diversity and primary production, trophic structure (e.g., top predator species, predator size) is surprisingly variable among Arctic lakes. We investigated trophic structure in lakes of arctic Alaska containing arctic char Salvelinus alpinus using stomach contents and stable isotope ratios in two geographically-close but hydrologically-distinct lake clusters to investigate how these fish may interact and compete for limited food resources. Aside from different lake connectivity patterns (‘leaky’ versus ‘closed’), differing fish communities (up to five versus only two species) between lake clusters allowed us to test trophic hypotheses including: (1) arctic char are more piscivorous, and thereby grow larger and obtain higher trophic positions, in the presence of other fish species; and, (2) between arctic char size classes, resource polymorphism is more prominent, and thereby trophic niches are narrower and overlap less, in the absence of other predators. Regardless of lake cluster, we observed little direct evidence of arctic char consuming other fishes, but char were larger (mean TL = 468 vs 264 mm) and trophic position was higher (mean TP = 4.0 vs 3.8 for large char) in lakes with other fishes. Further, char demonstrated less intraspecific overlap when other predators were present whereas niche overlap was up to 100% in closed, char only lakes. As hydrologic characteristics (e.g., lake connectivity, water temperatures) will change across the Arctic owing to climate change, our results provide insight regarding potential concomitant changes to fish interactions and increase our understanding of lake trophic structure to guide management and conservation goals.more » « less
-
{"Abstract":["Lakes are abundant features on coastal plains of the Arctic and most are termed "thermokarst" because they form in ice-rich permafrost and gradually expand over time. The dynamic nature of thermokarst lakes also makes them prone to catastrophic drainage and abrupt conversion to wetlands, called drained thermokarst lake basins (DTLBs). Together, thermokarst lakes and DTLBs cover up to 80% of arctic lowland regions, making understanding their response to ongoing climate change essential for coastal plain environmental assessment. Datasets presented here document water level and temperature (surface and ground) regimes for a large (38 sites) array of lake with high drainage potential and lake basin (DTLBS), which have already drained, located on differing terrain units of Alaska's Arctic Coastal Plain. Lake data was measured along deep protected shorelines using pressure transducers to record hourly water level and bed temperature. Wetland (DTLB) data was also measured with pressure transducers and ground thermistors at 25 and 100 centimeters (cm) depth. Of special interest at some DTLB sites was the potential occurrence of snow-dam outburst events during the early summer snowmelt periods. In these cases, pressure transducers were set to log at 10 minute intervals for this period. All data archived here are summarized at daily average values."]}more » « less
-
Lakes are abundant features on coastal plains of the Arctic, providing important fish and wildlife habitat and water supply for villages and industry, but also interact with frozen ground (permafrost) and the carbon it stores. Most of these lakes are termed "thermokarst" because they form in ice-rich permafrost and gradually expand over time. The dynamic nature of thermokarst lakes also makes them prone to catastrophic drainage and abrupt conversion to wetlands, called drained thermokarst lake basins (DTLBs). Together, thermokarst lakes and DTLBs cover up to 80% of arctic lowland regions, making understanding their response to ongoing climate change essential for coastal plain environmental assessment. Dating the timing of lake drainage can improve our understanding of the causes and consequences of DTLB formation. This suite of 14C (Carbon-14) ages provides insight into the timing of lake drainage on the North Slope of Alaska across a range of ecosystems and surficial geology types.more » « less
-
Lakes are abundant features on coastal plains of the Arctic, providing important fish and wildlife habitat and water supply for villages and industry, but also interact with frozen ground (permafrost) and the carbon it stores. Most of these lakes are termed "thermokarst" because they form in ice-rich permafrost and gradually expand over time. The dynamic nature of thermokarst lakes also makes them prone to catastrophic drainage and abrupt conversion to wetlands, called drained thermokarst lake basins (DTLBs). Together, thermokarst lakes and DTLBs cover up to 80% of arctic lowland regions, making understanding their response to ongoing climate change essential for coastal plain environmental assessment. Dating the timing of lake drainage can improve our understanding of the causes and consequences of DTLB formation. This suite of 14C (Carbon-14) ages provides insight into the timing of lake drainage on the North Slope of Alaska across a range of ecosystems and surficial geology types.more » « less
An official website of the United States government

