skip to main content

Title: Distributed Multi-Target Tracking for Heterogeneous Mobile Sensing Networks with Limited Field of Views
This paper introduces the normalized unused sensing capacity to measure the amount of information that a sensor is currently gathering relative to its theoretical maximum. This quantity can be computed using entirely local information and works for arbitrary sensor models, unlike previous literature on the subject. This is then used to develop a distributed coverage control strategy for a team of heterogeneous sensors that automatically balances the load based on the current unused capacity of each team member. This algorithm is validated in a multi-target tracking scenario, yielding superior results to standard approaches that do not account for heterogeneity or current usage rates.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE International Conference on Robotics and Automation (ICRA)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of multi-robot sensor coverage, which deals with deploying a multi-robot team in an environment and optimizing the sensing quality of the overall environment. As real-world environments involve a variety of sensory information, and individual robots are limited in their available number of sensors, successful multi-robot sensor coverage requires the deployment of robots in such a way that each individual team member’s sensing quality is maximized. Additionally, because individual robots have varying complements of sensors and both robots and sensors can fail, robots must be able to adapt and adjust how they value each sensing capability in order to obtain the most complete view of the environment, even through changes in team composition. We introduce a novel formulation for sensor coverage by multi-robot teams with heterogeneous sensing capabilities that maximizes each robot's sensing quality, balancing the varying sensing capabilities of individual robots based on the overall team composition. We propose a solution based on regularized optimization that uses sparsity-inducing terms to ensure a robot team focuses on all possible event types, and which we show is proven to converge to the optimal solution. Through extensive simulation, we show that our approach is able to effectively deploy a multi-robot team to maximize the sensing quality of an environment, responding to failures in the multi-robot team more robustly than non-adaptive approaches. 
    more » « less
  2. This paper addresses distributed data sampling in marine environments using robotic devices. We present a method to strategically sample locally observable features using two classes of sensor platforms. Our system consists of a sophisticated autonomous surface vehicle (ASV) which strategically samples based on information provided by a team of inexpensive sensor nodes. The sensor nodes effectively extend the observational capabilities of the vehicle by capturing georeferenced samples from disparate and moving points across the region. The ASV uses this information, along with its own observations, to plan a path so as to sample points which it expects to be particularly informative. We compare our approach to a traditional exhaustive survey approach and show that we are able to effectively represent a region with less energy expenditure. We validate our approach through simulations and test the system on real robots in field. 
    more » « less
  3. Presented at the Workshop on Heterogeneous Multi-Robot Task Allocation and Coordination. The authors recently developed a distributed algorithm to enable a team of homogeneous robots to search for and track an unknown and time-varying number of dynamic targets. This algorithm combined a distributed version of the PHD filter (for multi-target tracking) with Lloyd’s algorithm to drive the motion of the robots. In this paper we extend this previous work to allow a heterogeneous team of groundand aerial robots to perform the search and tracking tasks in a coordinated manner. Both types of robots are equipped with sensors that have a finite field of view and which may receive both false positive and false negative detections. Theaerial robots may vary the size of their sensor field of view (FoV) by changing elevation. This increase in the FoV coincides with a decrease in the accuracy and reliability of the sensor. The ground robots maintain the target tracking information while the aerial robots provide additional sensor coverage. We develop two new distributed algorithms to provide filter updates and to make control decisions in this heterogeneous team. Both algorithms only require robots to communicate with nearby robots and use minimal bandwidth.We demonstrate the efficacy of our approach through a series of simulated experiments which show that the heterogeneous teams are able to achieve more accurate tracking in less time than our previous work. 
    more » « less
  4. Amazon introduced spot instances in December 2009, enabling “customers to bid on unused Amazon EC2 capacity and run those instances for as long as their bid exceeds the current Spot Price.” Amazon’s real-time computational spot market was novel in multiple respects. For example, it was the first (and to date only) large-scale public implementation of market-based resource allocation based on dynamic pricing after decades of research, and it provided users with useful information, control knobs, and options for optimizing the cost of running cloud applications. Spot instances also introduced the concept of transient cloud servers derived from variable idle capacity that cloud platforms could revoke at any time. Transient servers have since become central to efficient resource management of modern clusters and clouds. As a result, Amazon’s spot market was the motivation for substantial research over the past decade. Yet, in November 2017, Amazon effectively ended its real-time spot market by announcing that users no longer needed to place bids and that spot prices will “...adjust more gradually, based on longer-term trends in supply and demand.” The changes made spot instances more similar to the fixed-price transient servers offered by other cloud platforms. Unfortunately, while these changes made spot instances less complex, they eliminated many benefits to sophisticated users in optimizing their applications. This paper provides a retrospective on Amazon’s real-time spot market, including its advantages and disadvantages for allocating transient servers compared to current fixed-price approaches. We also discuss some fundamental problems with Amazon’s spot market, which we identified in prior work (from 2016), that predicted its eventual end. We then discuss potential options for allocating transient servers that combine the advantages of Amazon’s real-time spot market, while also addressing the problems that likely led to its elimination. 
    more » « less
  5. In this article, we consider sequential dynamic team decision problems with nonclassical information structures. First, we address the problem from the point of view of a “manager” who seeks to derive the optimal strategy of the team in a centralized process. We derive structural results that yield an information state for the team, which does not depend on the control strategy, and thus, it can lead to a dynamic programming decomposition where the optimization problem is over the space of the team’s decisions. We, then, derive structural results for each team member that yield an information state which does not depend on their control strategy, and thus, it can lead to a dynamic programming decomposition where the optimization problem for each team member is over the space of their decisions. Finally, we show that the solution of each team member is the same as the one derived by the manager. We present an illustrative example of a dynamic team with a delayed sharing information structure. 
    more » « less