Utilizing heterogeneous mobile sensors to actively gather information improves adaptability and reliability in extended environments. This article presents a cooperative multirobot multitarget search and tracking framework aimed at enhancing the efficiency of the heterogeneous sensor network, and consequently, improving the overall target tracking accuracy. The concept of normalized unused sensing capacity is introduced to quantify the information a sensor is currently gathering relative to its theoretical maximum. This measurement can be computed using entirely local information and is applicable to various sensor models, distinguishing it from previous literature on the subject. It is then utilized to develop a heuristics distributed coverage control strategy for a heterogeneous sensor network, adaptively balancing the workload based on each sensor's current unused capacity. The algorithm is validated through a series of robot operating system (ROS) and MATLAB simulations, demonstrating superior results compared to standard approaches that do not account for heterogeneity or current usage rates.
more »
« less
Distributed Multi-Target Tracking for Heterogeneous Mobile Sensing Networks with Limited Field of Views
This paper introduces the normalized unused sensing capacity to measure the amount of information that a sensor is currently gathering relative to its theoretical maximum. This quantity can be computed using entirely local information and works for arbitrary sensor models, unlike previous literature on the subject. This is then used to develop a distributed coverage control strategy for a team of heterogeneous sensors that automatically balances the load based on the current unused capacity of each team member. This algorithm is validated in a multi-target tracking scenario, yielding superior results to standard approaches that do not account for heterogeneity or current usage rates.
more »
« less
- Award ID(s):
- 1830419
- PAR ID:
- 10314259
- Date Published:
- Journal Name:
- IEEE International Conference on Robotics and Automation (ICRA)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the problem of multi-robot sensor coverage, which deals with deploying a multi-robot team in an environment and optimizing the sensing quality of the overall environment. As real-world environments involve a variety of sensory information, and individual robots are limited in their available number of sensors, successful multi-robot sensor coverage requires the deployment of robots in such a way that each individual team member’s sensing quality is maximized. Additionally, because individual robots have varying complements of sensors and both robots and sensors can fail, robots must be able to adapt and adjust how they value each sensing capability in order to obtain the most complete view of the environment, even through changes in team composition. We introduce a novel formulation for sensor coverage by multi-robot teams with heterogeneous sensing capabilities that maximizes each robot's sensing quality, balancing the varying sensing capabilities of individual robots based on the overall team composition. We propose a solution based on regularized optimization that uses sparsity-inducing terms to ensure a robot team focuses on all possible event types, and which we show is proven to converge to the optimal solution. Through extensive simulation, we show that our approach is able to effectively deploy a multi-robot team to maximize the sensing quality of an environment, responding to failures in the multi-robot team more robustly than non-adaptive approaches.more » « less
-
Amazon introduced spot instances in December 2009, enabling “customers to bid on unused Amazon EC2 capacity and run those instances for as long as their bid exceeds the current Spot Price.” Amazon’s real-time computational spot market was novel in multiple respects. For example, it was the first (and to date only) large-scale public implementation of market-based resource allocation based on dynamic pricing after decades of research, and it provided users with useful information, control knobs, and options for optimizing the cost of running cloud applications. Spot instances also introduced the concept of transient cloud servers derived from variable idle capacity that cloud platforms could revoke at any time. Transient servers have since become central to efficient resource management of modern clusters and clouds. As a result, Amazon’s spot market was the motivation for substantial research over the past decade. Yet, in November 2017, Amazon effectively ended its real-time spot market by announcing that users no longer needed to place bids and that spot prices will “...adjust more gradually, based on longer-term trends in supply and demand.” The changes made spot instances more similar to the fixed-price transient servers offered by other cloud platforms. Unfortunately, while these changes made spot instances less complex, they eliminated many benefits to sophisticated users in optimizing their applications. This paper provides a retrospective on Amazon’s real-time spot market, including its advantages and disadvantages for allocating transient servers compared to current fixed-price approaches. We also discuss some fundamental problems with Amazon’s spot market, which we identified in prior work (from 2016), that predicted its eventual end. We then discuss potential options for allocating transient servers that combine the advantages of Amazon’s real-time spot market, while also addressing the problems that likely led to its elimination.more » « less
-
This paper addresses distributed data sampling in marine environments using robotic devices. We present a method to strategically sample locally observable features using two classes of sensor platforms. Our system consists of a sophisticated autonomous surface vehicle (ASV) which strategically samples based on information provided by a team of inexpensive sensor nodes. The sensor nodes effectively extend the observational capabilities of the vehicle by capturing georeferenced samples from disparate and moving points across the region. The ASV uses this information, along with its own observations, to plan a path so as to sample points which it expects to be particularly informative. We compare our approach to a traditional exhaustive survey approach and show that we are able to effectively represent a region with less energy expenditure. We validate our approach through simulations and test the system on real robots in field.more » « less
-
Significant power consumption is one of the major challenges for current and future high-performance computing (HPC) systems. All the while, HPC systems generally remain power underutilized, making them a great candidate for applying power oversubscription to reclaim unused capacity. However, an oversubscribed HPC system may occasionally get overloaded. In this paper, we propose MPR (Market-based Power Reduction), a scalable market-based approach where users actively participate in reducing the HPC system’s power consumption to mitigate overloads. In MPR, HPC users bid to supply, in exchange for incentives, the resource reduction required for handling the overloads. Using several real-world trace-based simulations, we extensively evaluate MPR and show that, by participating in MPR, users always receive more rewards than the cost of performance loss. At the same time, the HPC manager enjoys orders of magnitude more resource gain than her incentive payoff to the users. We also demonstrate the real-world effectiveness of MPR on a prototype system.more » « less
An official website of the United States government

