skip to main content


Title: PerceMon: Online Monitoring for Perception Systems
Perception algorithms in autonomous vehicles are vital for the vehicle to understand the semantics of its surroundings, including detection and tracking of objects in the environment. The outputs of these algorithms are in turn used for decision-making in safety-critical scenarios like collision avoidance, and automated emergency braking. Thus, it is crucial to monitor such perception systems at runtime. However, due to the high-level, complex representations of the outputs of perception systems, it is a challenge to test and verify these systems, especially at runtime. In this paper, we present a runtime monitoring tool, PerceMon that can monitor arbitrary specifications in Timed Quality Temporal Logic (TQTL) and its extensions with spatial operators. We integrate the tool with the CARLA autonomous vehicle simulation environment and the ROS middleware platform while monitoring properties on state-of-the-art object detection and tracking algorithms.  more » « less
Award ID(s):
2038666
NSF-PAR ID:
10314365
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Runtime Verification
Volume:
12974
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a novel notion of perception contracts to reason about the safety of controllers that interact with an environment using neural perception. Perception contracts capture errors in ground-truth estimations that preserve invariants when systems act upon them. We develop a theory of perception contracts and design symbolic learning algorithms for synthesizing them from a finite set of images. We implement our algorithms and evaluate synthesized perception contracts for two realistic vision-based control systems, a lane tracking system for an electric vehicle and an agricultural robot that follows crop rows. Our evaluation shows that our approach is effective in synthesizing perception contracts and generalizes well when evaluated over test images obtained during runtime monitoring of the systems.

     
    more » « less
  2. Modern autonomous systems rely on both object detection and object tracking in their visual perception pipelines. Although many recent works have attacked the object detection component of autonomous vehicles, these attacks do not work on full pipelines that integrate object tracking to enhance the object detector's accuracy. Meanwhile, existing attacks against object tracking either lack real-world applicability or do not work against a powerful class of object trackers, Siamese trackers. In this paper, we present AttrackZone, a new physically-realizable tracker hijacking attack against Siamese trackers that systematically determines valid regions in an environment that can be used for physical perturbations. AttrackZone exploits the heatmap generation process of Siamese Region Proposal Networks in order to take control of an object's bounding box, resulting in physical consequences including vehicle collisions and masked intrusion of pedestrians into unauthorized areas. Evaluations in both the digital and physical domain show that AttrackZone achieves its attack goals 92% of the time, requiring only 0.3-3 seconds on average. 
    more » « less
  3. Vehicle to Vehicle (V2V) communication allows vehicles to wirelessly exchange information on the surrounding environment and enables cooperative perception. It helps prevent accidents, increase the safety of the passengers, and improve the traffic flow efficiency. However, these benefits can only come when the vehicles can communicate with each other in a fast and reliable manner. Therefore, we investigated two areas to improve the communication quality of V2V: First, using beamforming to increase the bandwidth of V2V communication by establishing accurate and stable collaborative beam connection between vehicles on the road; second, ensuring scalable transmission to decrease the amount of data to be transmitted, thus reduce the bandwidth requirements needed for collaborative perception of autonomous driving vehicles. Beamforming in V2V communication can be achieved by utilizing image-based and LIDAR’s 3D data-based vehicle detection and tracking. For vehicle detection and tracking simulation, we tested the Single Shot Multibox Detector deep learning-based object detection method that can achieve a mean Average Precision of 0.837 and the Kalman filter for tracking. For scalable transmission, we simulate the effect of varying pixel resolutions as well as different image compression techniques on the file size of data. Results show that without compression, the file size for only transmitting the bounding boxes containing detected object is up to 10 times less than the original file size. Similar results are also observed when the file is compressed by lossless and lossy compression to varying degrees. Based on these findings using existing databases, the impact of these compression methods and methods of effectively combining feature maps on the performance of object detection and tracking models will be further tested in the real-world autonomous driving system. 
    more » « less
  4. In this paper, we meticulously examine the robustness of computer vision object detection frameworks within the intricate realm of real-world traffic scenarios, with a particular emphasis on challenging adverse weather conditions. Conventional evaluation methods often prove inadequate in addressing the complexities inherent in dynamic traffic environments—an increasingly vital consideration as global advancements in autonomous vehicle technologies persist. Our investigation delves specifically into the nuanced performance of these algorithms amidst adverse weather conditions like fog, rain, snow, sun flare, and more, acknowledging the substantial impact of weather dynamics on their precision. Significantly, we seek to underscore that an object detection framework excelling in clear weather may encounter significant challenges in adverse conditions. Our study incorporates in-depth ablation studies on dual modality architectures, exploring a range of applications including traffic monitoring, vehicle tracking, and object tracking. The ultimate goal is to elevate the safety and efficiency of transportation systems, recognizing the pivotal role of robust computer vision systems in shaping the trajectory of future autonomous and intelligent transportation technologies. 
    more » « less
  5. Urban Air Mobility (UAM) applications, such as air taxis, will rely heavily on perception for situational awareness and safe operation. With recent advances in AI/ML, state-of-the-art perception systems can provide the high-fidelity information necessary for UAM systems. However, due to size, weight, power, and cost (SWaP-C) constraints, the available computing resources of the on-board computing platform in such UAM systems are limited. Therefore, real-time processing of sophisticated perception algorithms, along with guidance, navigation, and control (GNC) functions in a UAM system, is challenging and requires the careful allocation of computing resources. Furthermore, the optimal allocation of computing resources may change over time depending on the speed of the vehicle, environmental complexities, and other factors. For instance, a fast-moving air vehicle at low altitude would need a low-latency perception system, as a long delay in perception can negatively affect safety. Conversely, a slowly landing air vehicle in a complex urban environment would prefer a highly accurate perception system, even if it takes a little longer. However, most perception and control systems are not designed to support such dynamic reconfigurations necessary to maximize performance and safety. We advocate for developing “anytime” perception and control capabilities that can dynamically reconfigure the capabilities of perception and GNC algorithms at runtime to enable safe and intelligent UAM applications. The anytime approach will efficiently allocate the limited computing resources in ways that maximize mission success and ensure safety. The anytime capability is also valuable in the context of distributed sensing, enabling the efficient sharing of perception information across multiple sensor modalities between the nodes. 
    more » « less