Abstract The impacts of a tropical cyclone after landfall depend not only on storm intensity but also on the size and structure of the wind field. Hence, a simple predictive model for the wind field after landfall has significant potential value. This work tests existing theory for wind structure and size over the ocean against idealized axisymmetric landfall experiments in which the surface beneath a mature storm is instantaneously dried and roughened individually or simultaneously. Structure theory captures the response of the low-level wind field to different types of idealized landfalls, given the intensity and size response. Storm size, modeled to follow the ratio of simulated time-dependent storm intensity to the Coriolis parameter, can generally predict the transient response of the storm gale wind radiir34ktto inland surface forcings, particularly for at least moderate surface roughening regardless of the level of drying. Given knowledge of the intensity evolution, the above results combine to yield a theoretical model that can predict the full tangential wind field response to idealized landfalls. Significance StatementA theoretical model that can predict the time-dependent wind field structure of landfalling tropical cyclones (TCs) with a small number of physical, observable input parameters is essential for mitigating hazards and allocating public resources. This work provides a first-order prediction of storm size and structure after landfall, which can be combined with existing intensity predictions to form a simple model describing the inland wind field evolution. Results show its potential utility for modeling idealized inland TC wind fields.
more »
« less
The Transient Responses of an Axisymmetric Tropical Cyclone to Instantaneous Surface Roughening and Drying
Abstract Inland tropical cyclone (TC) impacts due to high winds and rainfall-induced flooding depend strongly on the evolution of the wind field and precipitation distribution after landfall. However, research has yet to test the detailed response of a mature TC and its hazards to changes in surface forcing in idealized settings. This work tests the transient responses of an idealized hurricane to instantaneous transitions in two key surface properties associated with landfall: roughening and drying. Simplified axisymmetric numerical modeling experiments are performed in which the surface drag coefficient and evaporative fraction are each systematically modified beneath a mature hurricane. Surface drying stabilizes the eyewall and consequently weakens the overturning circulation, thereby reducing inward angular momentum transport that slowly decays the wind field only within the inner core. In contrast, surface roughening initially (~12 h) rapidly weakens the entire low-level wind field and enhances the overturning circulation dynamically despite the concurrent thermodynamic stabilization of the eyewall; thereafter the storm gradually decays, similar to drying. As a result, total precipitation temporarily increases with roughening but uniformly decreases with drying. Storm size decreases monotonically and rapidly with surface roughening, whereas the radius of maximum wind can increase with moderate surface drying. Overall, this work provides a mechanistic foundation for understanding the inland evolution of real storms in nature.
more »
« less
- Award ID(s):
- 1826161
- PAR ID:
- 10314392
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 77
- Issue:
- 8
- ISSN:
- 0022-4928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tropical cyclones cause significant inland hazards, including wind damage and freshwater flooding, which depend strongly on how storm intensity evolves after landfall. Existing theoretical predictions for storm intensification and equilibrium storm intensity have been tested over the open ocean but have not yet been applied to storms after landfall. Recent work examined the transient response of the tropical cyclone low-level wind field to instantaneous surface roughening or drying in idealized axisymmetric f -plane simulations. Here, experiments testing combined surface roughening and drying with varying magnitudes of each are used to test theoretical predictions for the intensity response. The transient response to combined surface forcings can be reproduced by the product of their individual responses, in line with traditional potential intensity theory. Existing intensification theory is generalized to weakening and found capable of reproducing the time-dependent inland intensity decay. The initial (0–10 min) rapid decay of near-surface wind caused by surface roughening is not captured by existing theory but can be reproduced by a simple frictional spindown model, where the decay rate is a function of surface drag coefficient. Finally, the theory is shown to compare well with the prevailing empirical decay model for real-world storms. Overall, results indicate the potential for existing theory to predict how tropical cyclone intensity evolves after landfall.more » « less
-
null (Ed.)Abstract The sensitivity of the inland wind decay to realistic inland surface roughness lengths and soil moisture contents is evaluated for strong, idealized tropical cyclones (TCs) of category 4 strength making landfall. Results show that the relative sensitivities to roughness and moisture differ throughout the decay process, and are dependent on the strength and size of the vortex. First, within 12 h of landfall, intense winds at the surface decay rapidly in reaction to the sudden change in surface roughness and decreasing enthalpy fluxes. Wind speeds above the boundary layer decay at a slower rate. Differences in soil moisture contents minimally affect intensity during the first 12 h, as the enhancement of latent heat fluxes from high moisture contents is countered by enhanced surface cooling. After TCs decay to tropical storm intensities, weakening slows and the sensitivity of the intensity decay to soil moisture increases. Increased latent heating becomes significant enough to combat surface temperature cooling, resulting in enhanced convection outside of the expanding radius of maximum winds. This supports a slower decay. Additionally, the decay of the radial wind profile by quadrant is highly asymmetric, as the rear and left-of-motion quadrants decay the fastest. Increasing surface roughness accelerates the decay of the strongest winds, while increasing soil moisture slows the decay of the larger TC wind field. Results have implications for inland forecasting of TC winds and understanding the potential for damage.more » « less
-
Abstract. Intense tropical cyclones (TCs) can cause catastrophic damage to coastal regions after landfall. Recent studies have linked the devastation associated with TCs to climate change, which induces favorable conditions, such as increasing sea-surface temperature, to supercharge storms. Meanwhile, environmental factors, such as atmospheric aerosols, also impact the development and intensity of TCs, but their effects remain poorly understood, particularly coupled with ocean dynamics. Here, we quantitatively assess the aerosol microphysical effects and aerosol-modified ocean feedbacks during Hurricane Katrina using a cloud-resolving atmosphere–ocean coupled model: Weather Research and Forecasting (WRF) in conjunction with the Regional Ocean Model System (ROMS). Our model simulations reveal that an enhanced storm destructive power, as reflected by larger integrated kinetic energy, heavier precipitation, and higher sea-level rise, is linked to the combined effects of aerosols and ocean feedbacks. These effects further result in an expansion of the storm circulation with a reduced intensity because of a decreasing moist static energy supply and enhancing vorticity Rossby wave outward propagation. Both accumulated precipitation and storm surge are enhanced during the mature stage of the TC with elevated aerosol concentrations, implying exacerbated flood damage over the polluted coastal region. The ocean feedback following the aerosol microphysical effects tends to mitigate the vertical mixing cooling in the ocean mixing layer and offsets the aerosol-induced storm weakening by enhancing cloud and precipitation near the eyewall region. Our results highlight the importance of accounting for the effects of aerosol microphysics and ocean-coupling feedbacks to improve the forecast of TC destructiveness, particularly near the heavily polluted coastal regions along the Gulf of Mexico.more » « less
-
In a tropical cyclone (TC), turbulence not only exists in the planetary boundary layer (PBL) but also can be generated above the PBL by the cloud processes in the eyewall and rainbands. It is found that the Hurricane Analysis and Forecast System (HAFS), a new multi-scale operational model for TC prediction, fails to capture the intense turbulent mixing in eyewall and rainband clouds due to a poor estimation of static stability in clouds. The problem is fixed by including the effects of multi-phase water in the stability calculation. Simulations of 21 TCs and tropical storms in the North Atlantic basin of 2016–2019 hurricane seasons totaling 118 forecast cycles show that the stability correction substantially improves HAFS's skill in predicting storm track and intensity. Analyses of HAFS's simulations of Hurricane Michael (2018) show that the positive tendency of vortex's tangential wind resulting from the radially inward transport of absolute vorticity dominates the eddy correlation tendencies induced by the model-resolved asymmetric eddies and serves as a main mechanism for the rapid intensification of Michael. The sub-grid scale (SGS) turbulent transport above the PBL in the eyewall plays a pivotal role in initiating a positive feedback among the eyewall convection, mean secondary overturning circulation, vortex acceleration via the inward transport of absolute vorticity, surface evaporation, and radial convergence of moisture in the PBL. Without the SGS transport above the PBL, the model-resolved vertical transport alone may not be sufficient in initiating the positive feedback underlying the rapid intensification of TCs.more » « less
An official website of the United States government

