skip to main content


Title: Interannual, summer, and diel variability of CH 4 and CO 2 effluxes from Toolik Lake, Alaska, during the ice-free periods 2010–2015
Accelerated warming in the Arctic has led to concern regarding the amount of carbon emission potential from Arctic water bodies. Yet, aquatic carbon dioxide (CO 2 ) and methane (CH 4 ) flux measurements remain scarce, particularly at high resolution and over long periods of time. Effluxes of methane (CH 4 ) and carbon dioxide (CO 2 ) from Toolik Lake, a deep glacial lake in northern Alaska, were measured for the first time with the direct eddy covariance (EC) flux technique during six ice-free lake periods (2010–2015). CO 2 flux estimates from the lake (daily average efflux of 16.7 ± 5.3 mmol m −2 d −1 ) were in good agreement with earlier estimates from 1975–1989 using different methods. CH 4 effluxes in 2010–2015 (averaging 0.13 ± 0.06 mmol m −2 d −1 ) showed an interannual variation that was 4.1 times greater than median diel variations, but mean fluxes were almost one order of magnitude lower than earlier estimates obtained from single water samples in 1990 and 2011–2012. The overall global warming potential (GWP) of Toolik Lake is thus governed mostly by CO 2 effluxes, contributing 86–93% of the ice-free period GWP of 26–90 g CO 2,eq m −2 . Diel variation in fluxes was also important, with up to a 2-fold (CH 4 ) to 4-fold (CO 2 ) difference between the highest nighttime and lowest daytime effluxes. Within the summer ice-free period, on average, CH 4 fluxes increased 2-fold during the first half of the summer, then remained almost constant, whereas CO 2 effluxes remained almost constant over the entire summer, ending with a linear increase during the last 1–2 weeks of measurements. Due to the cold bottom temperatures of this 26 m deep lake, and the absence of ebullition and episodic flux events, Toolik Lake and other deep glacial lakes are likely not hot spots for greenhouse gas emissions, but they still contribute to the overall GWP of the Arctic.  more » « less
Award ID(s):
1637459 1936769 1753731
NSF-PAR ID:
10314420
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental Science: Processes & Impacts
ISSN:
2050-7887
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Methane and carbon dioxide effluxes from aquatic systems in the Arctic will affect and likely amplify global change. As permafrost thaws in a warming world, more dissolved organic carbon (DOC) and greenhouse gases are produced and move from soils to surface waters where the DOC can be oxidized to CO 2 and also released to the atmosphere. Our main study objective is to measure the release of carbon to the atmosphere via effluxes of methane (CH 4 ) and carbon dioxide (CO 2 ) from Toolik Lake, a deep, dimictic, low-arctic lake in northern Alaska. By combining direct eddy covariance flux measurements with continuous gas pressure measurements in the lake surface waters, we quantified the k 600 piston velocity that controls gas flux across the air–water interface. Our measured k values for CH 4 and CO 2 were substantially above predictions from several models at low to moderate wind speeds, and only converged on model predictions at the highest wind speeds. We attribute this higher flux at low wind speeds to effects on water-side turbulence resulting from how the surrounding tundra vegetation and topography increase atmospheric turbulence considerably in this lake, above the level observed over large ocean surfaces. We combine this process-level understanding of gas exchange with the trends of a climate-relevant long-term (30 + years) meteorological data set at Toolik Lake to examine short-term variations (2015 ice-free season) and interannual variability (2010–2015 ice-free seasons) of CH 4 and CO 2 fluxes. We argue that the biological processing of DOC substrate that becomes available for decomposition as the tundra soil warms is important for understanding future trends in aquatic gas fluxes, whereas the variability and long-term trends of the physical and meteorological variables primarily affect the timing of when higher or lower than average fluxes are observed. We see no evidence suggesting that a tipping point will be reached soon to change the status of the aquatic system from gas source to sink. We estimate that changes in CH 4 and CO 2 fluxes will be constrained with a range of +30% and −10% of their current values over the next 30 years. 
    more » « less
  2. Abstract

    In limnological studies of temperate lakes, most studies of carbon dioxide (CO2) and methane (CH4) emissions have focused on summer measurements of gas fluxes despite the importance of shoulder seasons to annual emissions. This is especially pertinent to dimictic, small lakes that maintain anoxic conditions and turnover quickly in the spring and fall. We examined CO2and CH4dynamics from January to October 2020 in a small humic lake in northern Wisconsin, United States through a combination of discrete sampling and high frequency buoy and eddy covariance data collection. Eddy covariance flux towers were installed on buoys at the center of the lake while it was still frozen to continually measure CO2and CH4across seasons. Despite evidence for only partial turnover during the spring, there was still a notable 19‐day pulse of CH4emissions after lake ice melted with an average daytime flux rate of 8–30 nmol CH4m−2s−1. Our estimate of CH4emissions during the spring pulse was 16 mmol CH4m−2compared to 22 mmol CH4m−2during the stratified period from June to August. We did not observe a linear accumulation of gases under‐ice in our sampling period during the late winter, suggesting the complexity of this dynamic period and the emphasis for direct measurements throughout the ice‐covered period. The results of our study help to better understand the magnitude and timing of greenhouse gas emissions in a region expected to experience warmer winters with decreased ice duration.

     
    more » « less
  3. Abstract

    Seasonally ice‐covered permafrost lakes in the Arctic emit methane to the atmosphere during periods of open‐water. However, processes contributing to methane cycling under‐ice have not been thoroughly addressed despite the potential for significant methane emission to the atmosphere at ice‐out. We studied annual dissolved methane dynamics within a small (0.2 ha) Mackenzie River Delta lake using sensor and water sampling packages that autonomously and continuously collected lake water samples, respectively, for two years at multiple water column depths. Lake physical and biogeochemical properties (temperature; light; concentrations of dissolved oxygen, manganese, iron, and dissolved methane, including stable carbon, and radiocarbon isotopes) revealed annual patterns. Dissolved methane concentrations increase under‐ice after electron acceptors (oxygen, manganese, and iron oxides) are depleted or inaccessible from the water column. The radiocarbon age of dissolved methane suggests a source from recently decomposed carbon as opposed to thawed ancient permafrost. Sources of dissolved methane under‐ice include a diffusive flux from the sediments and may include water column methanogenesis and/or under‐ice hydrodynamic controls. Following ice‐out, the water column only partially mixes allowing half of the winter‐derived dissolved methane to be microbially oxidized. Despite oxidation at depth, surface water was a source of methane to the atmosphere. The greatest diffusive fluxes to the atmosphere occurred following ice‐out (75 mmol CH4m−2 d−1) and during a mixing episode in mid‐July, likely driven by a storm event. This study demonstrates the importance of fine‐scale temporal sampling to understand dissolved methane processes in seasonally ice‐covered lakes.

     
    more » « less
  4. Abstract

    Grassland ecosystems play an essential role in climate regulation through carbon (C) storage in plant and soil. But, anthropogenic practices such as livestock grazing, grazing related excreta nitrogen (N) deposition, and manure/fertilizer N application have the potential to reduce the effectiveness of grassland C sink through increased nitrous oxide (N2O) and methane (CH4) emissions. Although the effect of anthropogenic activities on net greenhouse gas (GHG) fluxes in grassland ecosystems have been investigated at local to regional scales, estimates of net GHG balance at the global scale remains uncertain. With the data-model framework integrating empirical estimates of livestock CH4emissions with process-based modeling estimates of land CO2, N2O and CH4fluxes, we examined the overall global warming potential (GWP) of grassland ecosystems during 1961–2010. We then quantified the grassland-specific and regional variations to identify hotspots of GHG fluxes. Our results show that, over a 100-year time horizon, grassland ecosystems sequestered a cumulative total of 113.9 Pg CO2-eq in plant and soil, but then released 91.9 Pg CO2-eq to the atmosphere, offsetting 81% of the net CO2sink. We also found large grassland-specific variations in net GHG fluxes, withpasturelandsacting as a small GHG source of 1.52 ± 143 Tg CO2-eq yr−1(mean ± 1.0 s.d.) andrangelandsa strong GHG sink (−442 ± 266 Tg CO2-eq yr−1) during 1961–2010. Regionally, Europe acted as a GHG source of 23 ± 10 Tg CO2-eq yr−1, while other regions (i.e. Africa, Southern Asia) were strong GHG sinks during 2001–2010. Our study highlights the importance of considering regional and grassland-specific differences in GHG fluxes for guiding future management and climate mitigation strategies in global grasslands.

     
    more » « less
  5. Abstract

    Existing analyses of salt marsh carbon budgets rarely quantify carbon loss as CO2through the air–water interface in inundated marshes. This study estimates the variability of partial pressure of CO2(pCO2) and air–water CO2fluxes over summer and fall of 2014 and 2015 using high‐frequency measurements of tidal waterpCO2in a salt marsh of the U.S. northeast region. Monthly mean CO2effluxes varied in the range of 5.4–25.6 mmol m−2marsh d−1(monthly median: 4.8–24.7 mmol m−2marsh d−1) during July to November from the tidal creek and tidally‐inundated vegetated platform. The source of CO2effluxes was partitioned between the marsh and estuary using a mixing model. The monthly mean marsh‐contributed CO2effluxes accounted for a dominant portion (69%) of total CO2effluxes in the inundated marsh, which was 3–23% (mean 13%) of the corresponding lateral flux rate of dissolved inorganic carbon (DIC) from marsh to estuary. Photosynthesis in tidal water substantially reduced the CO2evasion, accounting for 1–86% (mean 31%) of potential CO2evasion and 2–26% (mean 11%) of corresponding lateral transport DIC fluxes, indicating the important role of photosynthesis in controlling the air–water CO2evasion in the inundated salt marsh. This study demonstrates that CO2evasion from inundated salt marshes is a significant loss term for carbon that is fixed within marshes.

     
    more » « less