skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Significance of Vocal Tract Geometrical Variations and Loudness on Airflow and Droplet Dispersion in a Two-Dimensional Representation of [F]
Abstract

The significance of respiratory droplet transmission in spreading respiratory diseases such as COVID-19 has been identified by researchers. Although one cough or sneeze generates a large number of respiratory droplets, they are usually infrequent. In comparison, speaking and singing generate fewer droplets, but occur much more often, highlighting their potential as a vector for airborne transmission. However, the flow dynamics of speech and the transmission of speech droplets have not been fully investigated. To shed light on this topic, two-dimensional geometries of a vocal tract for a labiodental fricative [f] were generated based on real-time MRI of a subject during pronouncing [f]. In these models, two different curvatures were considered for the tip tongue shape and the lower lip to highlight the effects of the articulator geometries on transmission dynamics. The commercial ANSYS-Fluent CFD software was used to solve the complex expiratory speech airflow trajectories. Simultaneously, the discrete phase model of the software was used to track submicron and large size respiratory droplets exhaled during [f] utterance. The simulations were performed for high, normal, and low lung pressures to explore the influence of loud, normal, and soft utterances, respectively, on the airflow dynamics. The presented results demonstrate the variability of the airflow and droplet propagation as a function of the vocal tract geometrical characteristics and loudness.

 
more » « less
Award ID(s):
2029548
PAR ID:
10314437
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The American Society of Mechanical Engineers Fluids Engineering Division Summer Meeting
Volume:
3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate trajectories of microscale evaporating droplets in a stagnation point flow near a wall of a respiratory airway. The configuration is motivated by the problem of advection and deposition of microscale droplets of respiratory fluids in human airways during transmission of infectious diseases, such as tuberculosis and COVID-19. Laminar boundary layer equations are solved to describe the airflow while the equations of motion of the droplet include contributions from gravity, aerodynamic drag, and Saffman force. Evaporation is accounted for at both the droplet surfaceand the wall of the respiratory airway and is shown to delay droplet deposition as compared to the predictions of isothermal models. Evaporation at the airway wall has a stronger effect on droplet trajectories than evaporation at the droplet surface, leading to droplets being advected away by the flow and thus avoiding deposition in the stagnation point flow region.

     
    more » « less
  2. Abstract

    How human respiratory physiology and the transport phenomena associated with inhaled airflow in the upper airway proceed to impact transmission of SARS-CoV-2, leading to the initial infection, stays an open question. An answer can help determine the susceptibility of an individual on exposure to a COVID-2019 carrier and can also provide a preliminary projection of the still-unknown infectious dose for the disease. Computational fluid mechanics enabled tracking of respiratory transport in medical imaging-based anatomic domains shows that the regional deposition of virus-laden inhaled droplets at the initial nasopharyngeal infection site peaks for the droplet size range of approximately 2.5–19$$\upmu $$μ. Through integrating the numerical findings on inhaled transmission with sputum assessment data from hospitalized COVID-19 patients and earlier measurements of ejecta size distribution generated during regular speech, this study further reveals that the number of virions that may go on to establish the SARS-CoV-2 infection in a subject could merely be in the order of hundreds.

     
    more » « less
  3. Purpose

    To develop and evaluate a technique for 3D dynamic MRI of the full vocal tract at high temporal resolution during natural speech.

    Methods

    We demonstrate 2.4 × 2.4 × 5.8 mm3spatial resolution, 61‐ms temporal resolution, and a 200 × 200 × 70 mm3FOV. The proposed method uses 3D gradient‐echo imaging with a custom upper‐airway coil, a minimum‐phase slab excitation, stack‐of‐spirals readout, pseudo golden‐angle view order inkxky, linear Cartesian order alongkz, and spatiotemporal finite difference constrained reconstruction, with 13‐fold acceleration. This technique is evaluated using in vivo vocal tract airway data from 2 healthy subjects acquired at 1.5T scanner, 1 with synchronized audio, with 2 tasks during production of natural speech, and via comparison with interleaved multislice 2D dynamic MRI.

    Results

    This technique captured known dynamics of vocal tract articulators during natural speech tasks including tongue gestures during the production of consonants “s” and “l” and of consonant–vowel syllables, and was additionally consistent with 2D dynamic MRI. Coordination of lingual (tongue) movements for consonants is demonstrated via volume‐of‐interest analysis. Vocal tract area function dynamics revealed critical lingual constriction events along the length of the vocal tract for consonants and vowels.

    Conclusion

    We demonstrate feasibility of 3D dynamic MRI of the full vocal tract, with spatiotemporal resolution adequate to visualize lingual movements for consonants and vocal tact shaping during natural productions of consonant–vowel syllables, without requiring multiple repetitions.

     
    more » « less
  4. Abstract Background Airborne viral pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be encapsulated and transmitted through liquid droplets/aerosols formed during human respiratory events. Methods The number and extent of droplets/aerosols at distances between 1 and 6 ft (0.305–1.829 m) for a participant wearing no face covering, a cotton single-layer cloth face covering, and a 3-layer disposable face covering were measured for defined speech and cough events. The data include planar particle imagery to illuminate emissions by a light-sheet and local aerosol/droplet probes taken with phase Doppler interferometry and an aerodynamic particle sizer. Results Without face coverings, droplets/aerosols were detected up to a maximum of 1.25 m (4.1ft ± 0.22–0.28 ft) during speech and up to 1.37 m (4.5ft ± 0.19–0.33 ft) while coughing. The cloth face covering reduced maximum axial distances to 0.61 m (2.0 ft ± 0.11–0.15 ft) for speech and to 0.67 m (2.2 ft ± 0.02–0.20 ft) while coughing. Using the disposable face covering, safe distance was reduced further to 0.15 m (0.50 ft ± 0.01–0.03 ft) measured for both emission scenarios. In addition, the use of face coverings was highly effective in reducing the count of expelled aerosols. Conclusions The experimental study indicates that 0.914 m (3 ft) physical distancing with face coverings is equally as effective at reducing aerosol/droplet exposure as 1.829 m (6 ft) with no face covering. 
    more » « less
  5. Abstract

    With an increasing body of evidence that SARS-CoV-2 is an airborne pathogen, droplet character formed during speech, coughs, and sneezes are important. Larger droplets tend to fall faster and are less prone to drive the airborne transmission pathway. Alternatively, small droplets (aerosols) can remain suspended for long time periods. The small size of SARS-CoV-2 enables it to be encapsulated in these aerosols, thereby increasing the pathogen’s ability to be transmitted via airborne paths. Droplet formation during human respiratory events relates to airspeed (speech, cough, sneeze), fluid properties of the saliva/mucus, and the fluid content itself. In this work, we study the fluidic drivers (fluid properties and content) and their influence on factors relating to transmissibility. We explore the relationship between saliva fluid properties and droplet airborne transmission paths. Interestingly, the natural human response appears to potentially work with these drivers to mitigate pathogen transmission. In this work, the saliva is varied using two approaches: (1) modifying the saliva with colloids that increase the viscosity/surface tension, and (2) stimulating the saliva content to increased/decreased levels. Through modern experimental and numerical flow diagnostic methods, the character, content, and exposure to droplets and aerosols are all evaluated. The results indicate that altering the saliva properties can significantly impact the droplet size distribution, the formation of aerosols, the trajectory of the bulk of the droplet plume, and the exposure (or transmissibility) to droplets. High-fidelity numerical methods used and verify that increased droplet size character enhances droplet fallout. In the context of natural saliva response, we find previous studies indicating natural human responses of increased saliva viscosity from stress and reduced saliva content from either stress or illness. These responses both favorably correspond to reduced transmissibility. Such a finding also relates to potential control methods, hence, we compared results to a surgical mask. In general, we find that saliva alteration can produce fewer and larger droplets with less content and aerosols. Such results indicate a novel approach to alter SARS-CoV-2’s transmission path and may act as a way to control the COVID-19 pandemic, as well as influenza and the common cold.

     
    more » « less