skip to main content


Title: Multilevel Switched-Capacitor AC-DC Step-Down Rectifier for Wireless Charging with Reduced Conduction Loss and Harmonic Content
In this paper, a wireless charging architecture employing a multilevel switched-capacitor (MSC) AC-DC rectifier is investigated. The proposed MSC rectifier features a multilevel design which is scalable to accommodate different power ratings and load ranges. The topology showcases advantages for wireless power transfer (WPT) systems in terms of compactness, efficiency, impedance tunability, and harmonic attenuation. The single-stage active topology is capable of varying its low-distortion staircase input voltage to tune the wireless power transfer system for high system-wide efficiency. A 7-level, 20 W prototype is used to verify the WPT loading and loss analysis. The prototype operates at 150 kHz with up to 3:1 step-down conversion ratio to an output voltage of 5.0 V. The experimental peak DC-to-DC efficiency is 93.8% and the rectifier peak efficiency is 98.3%. The rectifier demonstrates low waveform distortion and high efficiency across many WPT loading conditions, solidifying its place as a strong candidate for wireless power applications.  more » « less
Award ID(s):
1751878
NSF-PAR ID:
10314465
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Power Electronics
ISSN:
0885-8993
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In wireless power transfer (WPT) applications, the multi-level switched capacitor topology achieves significant advantages in terms of efficiency, system loading, THD, and output regulation. The topology requires dual-loop control in order to harness these benefits. First, a small signal discrete time model for the 7-level rectifier WPT system is developed. Then, a control loop is designed that enables the rectifier to regulate DC load voltage by varying its modulation scheme. Next, the WPT carrier frequency is sensed and a phase-locked loop is used in combination with the small signal power stage model to design a closed-loop controller that synchronizes frequency and regulates control phase through adjustments of the switching period. Finally, cross-coupling interactions between the two control loops are modeled, and stable dual-loop operation is shown. 
    more » « less
  2. This work presents a miniaturized wireless power transfer (WPT) system integrated with a neuromodulation headstage for duty-cycled optical stimulation of freely moving rodents. The proposed WPT system is built using the commercially available off-the-shelf components (COTS) for the optogenetic neuromodulation system consisting of a bridge rectifier, a DC-DC converter, an oscillator circuit, an LED driver, and a μLED. The total power consumption of the stimulation system is 14 mW which is provided using the WPT method. The WPT system includes a novel transmitter (TX) coil implemented on a printed circuit board (PCB), and a solenoid receiver (RX) coil wrapped around a customized 3-D printed headstage. The proposed TX coil is designed in such a way that the magnetic field all across the TX coil is sufficient to provide the required power to the optical stimulation system that is worn as a headstage by the freely moving rat. The headstage device's dimension is 18.75 mm × 21.95 mm, weighing 4.75 g. The ratio of the weight of the headstage and rat is 4.75:300. The proposed system is able to achieve a maximum overall efficiency of ∼63% at 5 cm separation between the TX and RX coils, where the maximum power transfer efficiency (PTE) of the WPT system is ∼88% and the power conversion efficiency (PCE) of the rectifier is 71.6%. The proposed system with reconfigurable stimulation frequency is suitable for exciting different brain areas for long-term health monitoring. 
    more » « less
  3. A three-port multilevel inverter with two DC ports and an AC port using Flying Capacitor Multilevel (FCML) design based on Gallium Nitride (GaN) switches is proposed in this paper. Recently, FCML inverter has shown a superior ability for power conversion with high power density, improved Total Harmonic Distortion (THD), and efficiency. The presented three-port multilevel inverter fits various applications such as battery and photovoltaic (PV) grid integration and standalone AC load. The proposed inverter is experimentally verified by building a 3-kW prototype using GaN switches which include two 4-level FCML converter paths, each share the same bus capacitor (C bus ), which links them together. One FCML path is 1 kW that incorporates an unfolder for the DC-to-AC conversion and has achieved a peak efficiency of 98.2% with AC voltage and current THDs of 1.26% and 1.23%, respectively. While the second FCML converter path is 2 kW used for the DC-to-DC conversion and has achieved a 99.43% peak efficiency. 
    more » « less
  4. Wide band gap (WBG) devices have been widely adopted in numerous industrial applications. In medium voltage applications, multi-level converters are necessary to reduce the voltage stress on power devices, which increases the system control complexity and reduces power density and reliability. High voltage silicon carbide (SiC) MOSFET enables the medium voltage applications with less voltage level, simple control strategy and high power density. Nevertheless, great challenges have been posed on the gate driver design for high voltage SiC MOSFET. Wireless power transfer (WPT) can achieve power conversion with large airgap, which can satisfy the system isolation requirement. Thus, in this article, a WPT based gate driver is designed for the medium voltage SiC MOSFET. The coil is optimized by considering voltage isolation, coupling capacitance, size, and efficiency. Experimental prototype was built and tested to validate the effectiveness of the proposed WPT based gate driver. 
    more » « less
  5. This article proposes a matrix auto-transformer switched-capacitor dc–dc converter to achieve a high voltage conversion ratio, high efficiency, and high power density for 48-V data-center applications. On the high-voltage side, the proposed converter can fully leverage the benefits of high-performance low voltage stress devices similar to the multilevel modular switched-capacitor converter. Compared with the traditional isolated LLC converter with a matrix transformer, the proposed solution utilized a matrix autotransformer concept with merged primary and secondary side windings, thus leading to reduced transformer winding loss. The resonant inductor could be integrated into the transformer similar to the LLC converter. Because of the matrix autotransformer design, it can achieve a current doubler rectifier on the low voltage side. For less than 8-V low output voltage application, the current doubler rectifier design can fully utilize the best figure-of-merit 25-V device, which is more efficient than the full-bridge rectifier solution using two 25-V devices during the operation. All the devices can achieve zero voltage switching or zero current switching and can be naturally clamped without additional clamping circuits. A 500-W 48-V to 6-V dc–dc converter hardware prototype has been developed with optimized device selection and integrated matrix autotransformer design. Both simulation and experiment results have been provided to validate the features and benefits of the proposed converter. The maximum efficiency of the proposed converter can reach 98.33%. 
    more » « less