skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supervised Learning for Performance Prediction in Underwater Acoustic Communications
The propagation of acoustic waves under water is a highly complex and stochastic process. Such channel dynamics renders large performance variation in underwater acoustic (UWA) communications. Prediction of the UWA communication performance is critical for selection and adaptation of the communication strategies. This work explores the use of supervised learning for performance prediction in UWA communications. This work first quantifies the transmitter design, the UWA channel characteristics and the receiver design by numerical and categorical parameters. For a chosen performance metric (e.g., the bit error rate or the packet error rate), the performance prediction is cast individually into a numerical prediction problem and a classification problem. Using the data sets from two field experiments, the performance of typical supervised learning methods are examined. The data processing results reveal that some supervised learning methods can achieve fairly good numerical prediction or classification performance, and the discriminative models typically outperform the generative models.  more » « less
Award ID(s):
1651135
PAR ID:
10314540
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Global Oceans 2020: Singapore – U.S. Gulf Coast
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article investigates a robust receiver scheme for a single carrier, multiple-input–multiple-output (MIMO) underwater acoustic (UWA) communications, which uses the sparse Bayesian learning algorithm for iterative channel estimation embedded in Turbo equalization (TEQ). We derive a block-wise sparse Bayesian learning framework modeling the spatial correlation of the MIMO UWA channels, where a more robust expectation–maximization algorithm is proposed for updating the joint estimates of channel impulse response, residual noise, and channel covariance matrix. By exploiting the spatially correlated sparsity of MIMO UWA channels and the second-order a priori channel statistics from the training sequence, the proposed Bayesian channel estimator enjoys not only relatively low complexity but also more stable control of the hyperparameters that determine the channel sparsity and recovery accuracy. Moreover, this article proposes a low complexity space-time soft decision feedback equalizer (ST-SDFE) with successive soft interference cancellation. Evaluated by the undersea 2008 Surface Processes and Acoustic Communications Experiment, the improved sparse Bayesian learning channel estimation algorithm outperforms the conventional Bayesian algorithms in terms of the robustness and complexity, while enjoying better estimation accuracy than the orthogonal matching pursuit and the improved proportionate normalized least mean squares algorithms. We have also verified that the proposed ST-SDFE TEQ significantly outperforms the low-complexity minimum mean square error TEQ in terms of the bit error rate and error propagation. 
    more » « less
  2. Predicting the channel quality for an underwater acoustic communication link is not a straightforward task. Previous approaches have focused on either physical observations of weather or engineered signal features, some of which require substantial processing to obtain. This work applies a convolutional neural network to the channel impulse responses, allowing the network to learn the features that are useful in predicting the channel quality. Results obtained are comparable or better than conventional supervised learning models, depending on the dataset. The universality of the learned features is also demonstrated by strong prediction performance when transferring from a more complex underwater acoustic channel to a simpler one. 
    more » « less
  3. The underwater acoustic (UWA) channel is a complex and stochastic process with large spatial and temporal dynamics. This work studies the adaptation of the communication strategy to the channel dynamics. Specifically, a set of communication strategies are considered, including frequency shift keying (FSK), single-carrier communication, and multicarrier communication. Based on the channel condition, a reinforcement learning (RL) algorithm, the Depth Determined Strategy Gradient (DDPG) method along with a Gumbel-softmax scheme is employed for intelligent and adaptive switching among those communication strategies. The adaptive switching is performed on a transmission block-by-block basis, with the goal of maximizing a long-term system performance. The reward function is defined based on the energy efficiency and the spectral efficiency of the communication strategies. Simulation results reveal that the proposed method outperforms a random selection method in time-varying channels. 
    more » « less
  4. null (Ed.)
    In the problem of domain generalization (DG), there are labeled training data sets from several related prediction problems, and the goal is to make accurate predictions on future unlabeled data sets that are not known to the learner. This problem arises in several applications where data distributions fluctuate because of environmental, technical, or other sources of variation. We introduce a formal framework for DG, and argue that it can be viewed as a kind of supervised learning problem by augmenting the original feature space with the marginal distribution of feature vectors. While our framework has several connections to conventional analysis of supervised learning algorithms, several unique aspects of DG require new methods of analysis. This work lays the learning theoretic foundations of domain generalization, building on our earlier conference paper where the problem of DG was introduced (Blanchard et al., 2011). We present two formal models of data generation, corresponding notions of risk, and distribution-free generalization error analysis. By focusing our attention on kernel methods, we also provide more quantitative results and a universally consistent algorithm. An efficient implementation is provided for this algorithm, which is experimentally compared to a pooling strategy on one synthetic and three real-world data sets. Keywords: domain generalization, generalization error bounds, Rademacher complexity, kernel methods, universal consistency, kernel approximation 
    more » « less
  5. An underwater acoustic (UWA) channel model with high validity and re-usability is widely demanded. In this paper, we propose a variational auto-encoder (VAE)-based deep generative model which learns an abstract representation of the UWA channel impulse responses (CIRs) and can generate CIR samples with similar features. A customized training process is proposed to avoid the model collapse and being trapped in a gradient pit. The proposed deep generative model is validated using field experimental data sets. 
    more » « less