skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Call for a Humanistic Stance Toward K–12 Data Science Education
There is growing interest in how to better prepare K–12 students to work with data. In this article, we assert that these discussions of teaching and learning must attend to the human dimensions of data work. Specifically, we draw from several established lines of research to argue that practices involving the creation and manipulation of data are shaped by a combination of personal experiences, cultural tools and practices, and political concerns. We demonstrate through two examples how our proposed humanistic stance highlights ways that efforts to make data personally relevant for youth also necessarily implicate cultural and sociopolitical dimensions that affect the design and learning opportunities in data-rich learning environments. We offer an interdisciplinary framework based on literature from multiple bodies of educational research to inform design, teaching and research for more effective, responsible, and inclusive student learning experiences with and about data.  more » « less
Award ID(s):
1900606
PAR ID:
10314699
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Educational Researcher
Volume:
50
Issue:
9
ISSN:
0013-189X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Purpose The purpose of this paper is to explore the designed cultural ecology of a hip-hop and computational science, technology, engineering, and mathematics (STEM) camp and the ways in which that ecology contributed to culturally sustaining learning experiences for middle school youth. In using the principles of hip-hop as a CSP for design, the authors question how and what practices were supported or emerged and how they became resources for youth engagement in the space. Design/methodology/approach The overall methodology was design research. Through interpretive analysis, it uses an example of four Black girls participating in the camp as they build a computer-controlled DJ battle station. Findings Through a close examination of youth interactions in the designed environment – looking at their communication, spatial arrangements, choices and uses of materials and tools during collaborative project work – the authors show how a learning ecology, designed based on hip-hop and computational practices and shaped by the history and practices of the dance center where the program was held, provided access to ideational, relational, spatial and material resources that became relevant to learning through computational making. The authors also show how youth engagement in the hip-hop computational making learning ecology allowed practices to emerge that led to expansive learning experiences that redefine what it means to engage in computing. Research limitations/implications Implications include how such ecologies might arrange relations of ideas, tools, materials, space and people to support learning and positive identity development. Originality/value Supporting culturally sustaining computational STEM pedagogies, the article argues two original points in informal youth learning 1) an expanded definition of computing based on making grammars and the cultural practices of hip-hop, and 2) attention to cultural ecologies in designing and understanding computational STEM learning environments. 
    more » « less
  2. A. Lischka, E. Dyer (Ed.)
    Mathematical modeling can be a lever for equity in the elementary math classroom, as it empowers teachers to build on the knowledge and cultural resources that children bring to the classroom and empowers students to draw on their experiences and identities to inform their mathematical work. To better support this transformative synergy between mathematical modeling and equity-oriented practices, we need a tool to deepen our understanding of variations and potential trajectories of teacher practice. In this report, we briefly describe our process for developing an equity-oriented mathematical modeling classroom observation protocol. We then discuss two sample dimensions from our tool to illustrate our integrated attention to equity-focused and mathematical modeling-specific teaching practices. 
    more » « less
  3. null (Ed.)
    High-quality afterschool programs (ASPs) are opportunities to diversify the ways that Latinx youth from economically underprivileged communities experience STEM learning. Utilizing qualitative methods, based on the experiences and perspectives of low-income Latinx middle school participants of a math enrichment ASP in Southern California, we identified four culturally responsive practices: (1) the promotion of an inclusive, safe, and respectful program climate, (2) engaging in personal conversations, (3) facilitating opportunities for mutual and math learning across diverse cultures and perspectives, and (4) the promotion of math and a range of social-emotional skills across contexts. These practices helped youth feel more connected to the program, their peers, and program staff (college mentors); provided a platform for youth voice and contribution to the processes of teaching and learning; facilitated opportunities for skill development and practice across the different contexts of youth’s lives; interrelated with Latinx cultural values; and helped to promote youth’s engagement and math learning. Importantly, youth’s relationships with their mentors was a significant aspect of their experiences and perceptions of these practices. We argue that culturally responsive practices are necessary to achieve high-quality programs and provide specific implications for how ASPs can implement them in the design and implementation of their programs. 
    more » « less
  4. This complete research paper details an investigation into the influence of instructors' pedagogical knowledge on their classroom practices in the context of teaching first-year engineering courses. Background and Motivation: First-year engineering courses serve as the foundational setting in which students are introduced to the field of engineering as well as the pedagogies specific to engineering teaching and learning. These courses are pivotal in equipping students with essential knowledge and skills, setting the stage for their success in more advanced engineering topics. Understanding how instructors' pedagogical knowledge affects their teaching practices is crucial. Pedagogical knowledge encompasses a wide range of techniques to effectively manage a classroom and engage students. This includes the use of instructional strategies that cater to diverse student needs, the design of impactful and engaging lesson plans, etc. There is, however, limited research on how instructors’ pedagogical knowledge influences their classroom practices in first-year engineering courses. Hence, it seems opportune and essential to conduct additional research on engineering instructors' classroom practices. Research Question: The central question driving this research is: How does instructors' pedagogical knowledge influence their pedagogical practices for first-year engineering courses? Method: For this study, we chose the model of teacher professional knowledge and skill (TPK&S) that includes pedagogical content knowledge (PCK). The model recognizes the fundamental importance of pedagogical knowledge and contextualizes PCK within that framework, encompassing the intricate nature of teaching and learning. A descriptive case study was utilized as a methodology for this work to delve into the phenomenon. The context of the study was a first-year introductory engineering course offered at a large public research institution. This is a pilot study for an NSF-funded project (blinded for review), the study involved two instructors, Chandler and Joey (pseudonyms), chosen through purposive sampling, with varying levels of teaching experience. Data collection involved direct classroom observation using the Teaching Dimensions Observation Protocol (TDOP) and semi-structured interviews conducted after the observations. The interviews were conducted after classroom observations, allowing the researcher to explore specific findings from the observations. Results: Thematic analysis was used to categorize the data based on the constructs of the theoretical framework. The analysis revealed three major themes: (a) Instructors' topic-specific professional knowledge significantly influences their pedagogical practices. Both instructors adapt their teaching methods based on their understanding of course material and students' difficulties. (b) The interaction between instructors' personal pedagogical content knowledge (PCK) and the classroom context shapes their classroom practices. (c) Instructors' beliefs and prior knowledge act as amplifiers or filters based on the situation. They filter out their teaching practices that do not align with their beliefs and prior knowledge. Conclusion: The findings presented in this paper provide valuable insights into the complex interplay between instructors' pedagogical knowledge and their classroom practices. This work holds significant implications for current and future first-year instructors in that this paper will showcase how instructors use their understanding of the content and their students to teach, which is a critical aspect of helping students successfully integrate into engineering. 
    more » « less
  5. null (Ed.)
    Abstract: Educator preparation programs have moved away from o ering interest-based courses that prepare a teacher candidate on a more surface level and have opted to integrate more authentic experiences with technology that are infused into coursework. This research study focused on redesigning key courses in both the general and special education graduate-level educator preparation programs (EPPs) to infuse learning experiences through a simulated learning environment (Mursion) to help bridge teacher candidates’ coursework and field experiences, o ering them robust experience with high leverage practices and technology that increases their own competency. Data from this study demonstrated that preservice teacher candidate work within the Mursion simulated learning environment increased use of high leverage practices related to strategic teaching, collaboration, differentiation, and providing feedback. Implications for instructional coaching, microteaching, repeated practice, and closing the research to practice gap are discussed. 
    more » « less