Abstract Atom transfer radical polymerization (ATRP) has been successfully employed for the preparation of various advanced materials with controlled architecture. New catalysts with strongly enhanced activity permit more environmentally benign ATRP procedures using ppm levels of catalyst. Precise control over polymer composition, topology, and incorporation of site specific functionality enables synthesis of well‐defined gradient, block, comb copolymers, polymers with (hyper)branched structures including stars, densely grafted molecular brushes or networks, as well as inorganic–organic hybrid materials and bioconjugates. Examples of specific applications of functional materials include thermoplastic elastomers, nanostructured carbons, surfactants, dispersants, functionalized surfaces, and biorelated materials.
more »
« less
Organic building blocks at inorganic nanomaterial interfaces
This tutorial review presents our perspective on designing organic molecules for the functionalization of inorganic nanomaterial surfaces, through the model of an “anchor-functionality” paradigm. This “anchor-functionality” paradigm is a streamlined design strategy developed from a comprehensive range of materials ( e.g. , lead halide perovskites, II–VI semiconductors, III–V semiconductors, metal oxides, diamonds, carbon dots, silicon, etc. ) and applications ( e.g. , light-emitting diodes, photovoltaics, lasers, photonic cavities, photocatalysis, fluorescence imaging, photo dynamic therapy, drug delivery, etc. ). The structure of this organic interface modifier comprises two key components: anchor groups binding to inorganic surfaces and functional groups that optimize their performance in specific applications. To help readers better understand and utilize this approach, the roles of different anchor groups and different functional groups are discussed and explained through their interactions with inorganic materials and external environments.
more »
« less
- Award ID(s):
- 1719797
- PAR ID:
- 10314866
- Date Published:
- Journal Name:
- Materials Horizons
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2051-6347
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Biochar (BC) generated from thermal and hydrothermal cracking of biomass is a carbon-rich product with the microporous structure. The graphene-like structure of BC contains different chemical functional groups (e.g. phenolic, carboxylic, carbonylic, etc.), making it a very attractive tool for wastewater treatment, CO 2 capture, toxic gas adsorption, soil amendment, supercapacitors, catalytic applications, etc. However, the carbonaceous and mineral structure of BC has a potential to accept more favorable functional groups and discard undesirable groups through different chemical processes. The current review aims at providing a comprehensive overview on different chemical modification mechanisms and exploring their effects on BC physicochemical properties, functionalities, and applications. To reach these objectives, the processes of oxidation (using either acidic or alkaline oxidizing agents), amination, sulfonation, metal oxide impregnation, and magnetization are investigated and compared. The nature of precursor materials, modification preparatory/conditions, and post-modification processes as the key factors which influence the final product properties are considered in detail; however, the focus is dedicated to the most common methods and those with technological importance.more » « less
-
The realization of multifunctional nanoparticle systems is essential to achieve highly efficient catalytic materials for specific applications; however, their production remains quite challenging. They are typically achieved through the incorporation of multiple inorganic components; however, incorporation of functionality could also be achieved at the organic ligand layer. In this work, we demonstrate the generation of multifunctional nanoparticle catalysts using peptide-based ligands for tandem catalytic functionality. To this end, chimeric peptides were designed that incorporated a Au binding sequence and a catalytic sequence which can drive ester hydrolysis. Using this chimera, Au nanoparticles were prepared, which sufficiently presented the catalytic domain of the peptide to drive tandem catalytic processes occurring at the peptide ligand layer and the Au nanoparticle surface. This work represents unique pathways to achieve multifunctionality from nanoparticle systems tuned by both the inorganic and bio/organic components, which could be highly important for applications beyond catalysis, including theranostics, sensing, and energy technologies.more » « less
-
null (Ed.)Hybrid organic–inorganic composites possessing both electronic and magnetic properties are promising materials for a wide range of applications. Controlled and ordered arrangement of the organic and inorganic components is key for synergistic cooperation toward desired functions. In this work, we report the self-assemblies of core–shell composite nanofibers from conjugated block copolymers and magnetic nanoparticles through the cooperation of orthogonal non-covalent interactions. We show that well-defined core–shell conjugated polymer nanofibers can be obtained through solvent induced self-assembly and polymer crystallization, while hydroxy and pyridine functional groups located at the shell of nanofibers can immobilize magnetic nanoparticles via hydrogen bonding and coordination interactions. These precisely arranged nanostructures possess electronic properties intrinsic to the polymers and are simultaneously responsive to external magnetic fields. We applied these composite nanofibers in organic solar cells and found that these non-covalent interactions led to controlled thin film morphologies containing uniformly dispersed nanoparticles, although high loadings of these inorganic components negatively impact device performance. Our methodology is general and can be utilized to control the spatial distribution of functionalized organic/inorganic building blocks, and the magnetic responsiveness and optoelectronic activities of these nanostructures may lead to new opportunities in energy and electronic applications.more » « less
-
null (Ed.)Amorphous inorganic semiconductors have attracted growing interest due to their unique electrical and optical properties that arise from their intrinsic disordered structure and thermodynamic metastability. Recently, amorphous inorganic semiconductors have been applied in a variety of new technologies, including solar cells, photoelectrocatalysis, and photocatalysis. It has been reported that amorphous phases can improve both efficiency and stability in these applications. While these phenomena are well established, their mechanisms have long remained unclear. This review first introduces the general background of amorphous inorganic semiconductor properties and synthesis. Then, the recent successes and current challenges of amorphous inorganic semiconductor-based materials for applications in solar cells, photoelectrocatalysis, and photocatalysis are addressed. In particular, we discuss the mechanisms behind the remarkable performances of amorphous inorganic semiconductors in these fields. Finally, we provide insightful perspectives into further developments for applications of amorphous inorganic semiconductors.more » « less
An official website of the United States government

